Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895978252> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2895978252 endingPage "409" @default.
- W2895978252 startingPage "403" @default.
- W2895978252 abstract "No AccessEngineering NotesDecision Tree– and Random Forest–Based Novel Unsteady Aerodynamics Modeling Using Flight DataAjit Kumar and Ajoy Kanti GhoshAjit KumarIndian Institute of Technology of Kanpur, Kanpur 208 016, Uttar Pradesh, India*Ph.D. Student, Department of Aerospace Engineering.Search for more papers by this author and Ajoy Kanti GhoshIndian Institute of Technology of Kanpur, Kanpur 208 016, Uttar Pradesh, India†Professor, Department of Aerospace Engineering.Search for more papers by this authorPublished Online:15 Oct 2018https://doi.org/10.2514/1.C035034SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Jategaonkar R. V., Flight Vehicle System Identification: A Time Domain Methodology, AIAA Education Series, AIAA, Reston, VA, 2006, Chaps. 2, 12. LinkGoogle Scholar[2] Grauer J. A. and Morelli E. A., “Generic Global Aerodynamic Model for Aircraft,” Journal of Aircraft, Vol. 52, No. 1, 2014, pp. 13–20. LinkGoogle Scholar[3] Klein V. and Morelli E. A., Aircraft System Identification: Theory and Practice, AIAA, Reston, VA, 2006, pp. 351–382. CrossrefGoogle Scholar[4] Fischenberg D., “Identification of an Unsteady Aerodynamics Stall Model from Flight Test Data,” RTO MP-11, DLR-Germany, Paper No. 17, 1999. Google Scholar[5] Mehra R. K., Stepner D. E. and Tyler J. S., “Maximum Likelihood Identification of Aircraft Stability and Control Derivatives,” Journal of Aircraft, Vol. 11, No. 2, 1974, pp. 81–89. doi:https://doi.org/10.2514/3.60327 LinkGoogle Scholar[6] Goman M. G. and Khrabrov A. N., “State-Space Representation of Aerodynamic Characteristics of an Aircraft at High,” Journal of Aircraft, Vol. 31, No. 5, 1994, pp. 1109–1115. doi:https://doi.org/10.2514/3.46618 LinkGoogle Scholar[7] Nelson R. C. and Pelletier A., “The Unsteady Aerodynamics of Slender Wings and Aircraft Undergoing Large Amplitude Maneuvers,” Progress in Aerospace Sciences, Vol. 39, Nos. 2–3, 2003, pp. 185–248. PAESD6 0376-0421 CrossrefGoogle Scholar[8] Fischenberg D. and Jategaonkar R. V., “Identification of Aircraft Stall Behavior from Flight Test Data,” RTO MP-11, DLR-Germany, Paper No. 17, 1999. Google Scholar[9] Ghoreyshi M. and Cummings R. M., “Unsteady Aerodynamics Modeling for Aircraft Maneuvers: A New Approach Using Time-Dependent Surrogate Modeling,” Aerospace Science and Technology, Vol. 39, Dec. 2014, pp. 222–242. doi:https://doi.org/10.1016/j.ast.2014.09.009 CrossrefGoogle Scholar[10] Peyada N. K. and Ghosh A. K., “Aircraft Parameter Estimation Using a New Filtering Technique Based Upon a Neural Network and Gauss-Newton Method,” The Aeronautical Journal, Vol. 113, No. 1142, 2009, pp. 243–252. doi:https://doi.org/10.1017/S0001924000002918 AENJAK 0001-9240 CrossrefGoogle Scholar[11] Kumar R. and Ghosh A. K., “Nonlinear Aerodynamic Modeling of Hansa-3 Aircraft Using Neural Gauss-Newton Method,” Journal of Aerospace Science and Technology, Vol. 63, No. 3, 2011, pp. 194–204. Google Scholar[12] Faller W. E. and Schreck S. J., “Unsteady Fluid Mechanics Applications of Neural Networks,” Journal of Aircraft, Vol. 34, No. 1, 1997, pp. 48–55. doi:https://doi.org/10.2514/2.2134 LinkGoogle Scholar[13] Marques F. D. and Anderson J., “Identification and Prediction of Unsteady Transonic Aerodynamic Loads by Multi-Layer Functionals,” Journal of Fluids and Structures, Vol. 15, No. 1, 2001, pp. 83–106. doi:https://doi.org/10.1006/jfls.2000.0321 0889-9746 CrossrefGoogle Scholar[14] Voitcu O. and Wong Y. S., “Neural Network Approach for Nonlinear Aeroelastic Analysis,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 1, 2003, pp. 99–105. doi:https://doi.org/10.2514/2.5019 JGCODS 0731-5090 LinkGoogle Scholar[15] Zhang W., Wang B., Ye Z. and Quan J., “Efficient Method for Limit Cycle Flutter Analysis Based on Nonlinear Aerodynamic Reduced-Order Models,” AIAA Journal, Vol. 50, No. 5, 2012, pp. 1019–1028. doi:https://doi.org/10.2514/1.J050581 AIAJAH 0001-1452 LinkGoogle Scholar[16] Winter M. and Breitsamter C., Reduced-Order Modeling of Unsteady Aerodynamic Loads Using Radial Basis Function Neural Networks, Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, Bonn, Germany, 2011. Google Scholar[17] Lindhorst K., Haupt M. C. and Horst P., “Efficient Surrogate Modelling of Nonlinear Aerodynamics in Aerostructural Coupling Schemes,” AIAA Journal, Vol. 52, No. 9, 2014, pp. 1952–1966. doi:https://doi.org/10.2514/1.J052725 AIAJAH 0001-1452 LinkGoogle Scholar[18] Winter M. and Breitsamter C., Unsteady Aerodynamic Modeling Using Neuro-Fuzzy Approaches Combined with POD, Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, Bonn, Germany, 2015. Google Scholar[19] Morelli E. A. and Klein V., “Application of System Identification to Aircraft at NASA Langley Research Center,” Journal of Aircraft, Vol. 42, No. 1, 2005, pp. 12–25. doi:https://doi.org/10.2514/1.3648 LinkGoogle Scholar[20] De JesusMota S. and Botez R. M., “New Helicopter Model Identification Method Based on a Neural Network Optimization Algorithm and on Flight Test Data,” The Aeronautical Journal, Vol. 115, No. 1167, 2011, pp. 295–314. doi:https://doi.org/10.1017/S0001924000005789 AENJAK 0001-9240 CrossrefGoogle Scholar[21] Boely N., Botez R. M. and Kouba G., “Identification of a Nonlinear F/A-18 Model by Use of Fuzzy Logic and Neural Network Methods,” Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, Vol. 225, No. 5, 2011, pp. 559–574. CrossrefGoogle Scholar[22] Kumar A. and Ghosh A. K., “Data-Driven Method Based Aerodynamic Parameter Estimation from Flight Data,” 2018 AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2018-0768, 2018. LinkGoogle Scholar[23] Saderla S., Dhayalan R. and Ghosh A. K., “Non-Linear Aerodynamic Modelling of Unmanned Cropped Delta Configuration from Experimental Data,” The Aeronautical Journal, Vol. 121, No. 1237, 2017, pp. 320–340. doi:https://doi.org/10.1017/aer.2016.124 AENJAK 0001-9240 CrossrefGoogle Scholar[24] Nelles O., Nonlinear System Identification from Classical approaches to Neural Networks and Fuzzy Models, Springer–Verlag, Berlin, 2001, Chaps. 1, 12. Google Scholar[25] Loh W. Y., “Classification and Regression Trees,” Encyclopedia of Statistics in Quality and Reliability, edited by Ruggeri F., Kenett R. and Faltin F. W., Wiley, Chichester, U.K., 2011, pp. 315–323. Google Scholar[26] Timofeev R., Classification and Regression Trees (CART) Theory and Applications, Humboldt Univ., Berlin, 2004, Chap. 5. Google Scholar[27] Khandelwal M., Armaghani D. J., Faradonbeh R. S., Yellishetty M., Majid M. Z. A. and Monjezi M., “Classification and Regression Tree Technique in Estimating Peak Particle Velocity Caused by Blasting,” Engineering with Computers, Vol. 33, No. 1, 2017, pp. 45–53. doi:https://doi.org/10.1007/s00366-016-0455-0 ENGCE7 0177-0667 CrossrefGoogle Scholar[28] Breiman L., Friedman J. H., Olshen R. and Stone C. J., Classification and Regression Tree, Wadsworth Brooks/Cole Advanced Books & Software, Pacific, CA, 1984, Chap. 8. Google Scholar[29] Razi M. A. and Athappilly K., “A Comparative Predictive Analysis of Neural Networks (NNs), Nonlinear Regression and Classification and Regression Tree (CART) Models,” Expert Systems with Applications, Vol. 29, No. 1, 2005, pp. 65–74. doi:https://doi.org/10.1016/j.eswa.2005.01.006 ESAPEH 0957-4174 CrossrefGoogle Scholar[30] Antipov E. A. and Pokryshevskaya E. B., “Mass Appraisal of Residential Apartments: An Application of Random Forest for Valuation and a CART-Based Approach for Model Diagnostics,” Expert Systems with Applications, Vol. 39, No. 2, 2012, pp. 1772–1778. doi:https://doi.org/10.1016/j.eswa.2011.08.077 ESAPEH 0957-4174 CrossrefGoogle Scholar[31] Loh W.-Y., “Classification and Regression Trees,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 1, No. 1, 2011, pp. 14–23. CrossrefGoogle Scholar[32] Verikas A., Gelzinis A. and Bacauskiene M., “Mining Data with Random Forests: A Survey and Results of New Tests,” Pattern Recognition, Vol. 44, No. 2, 2011, pp. 330–349. doi:https://doi.org/10.1016/j.patcog.2010.08.011 PTNRA8 0031-3203 CrossrefGoogle Scholar[33] Joshi A., Monnier C., Betke M. and Sclaroff S., “Comparing Random Forest Approaches to Segmenting and Classifying Gestures,” Image and Vision Computing, Vol. 58, Feb. 2017, pp. 86–95. doi:https://doi.org/10.1016/j.imavis.2016.06.001 IVCODK 0262-8856 CrossrefGoogle Scholar[34] Markham I. S., Mathieu R. G. and Wray B. A., “Kanban Setting Through Artificial Intelligence: A Comparative Study of Artificial Neural Networks and Decision Trees,” Integrated Manufacturing Systems, Vol. 11, No. 4, 2000, pp. 239–246. doi:https://doi.org/10.1108/09576060010326230 IMSYEY 0957-6061 CrossrefGoogle Scholar[35] MATLAB, The MathWorks. Inc., Natick, MA, 2016, p. 488. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byRegularization regression methods for aerodynamic parameter estimation from flight data11 January 2023 | Aircraft Engineering and Aerospace Technology, Vol. 14A Multi-DOF Manipulator Joint Trajectory Tracking and Monitoring Method Based on Decision TreeMathematical Problems in Engineering, Vol. 2022Machine learning in aerodynamic shape optimizationProgress in Aerospace Sciences, Vol. 134Incorporating Physical Models for Dynamic Stall Prediction Based on Machine LearningXu Wang , Jiaqing Kou , Weiwei Zhang and Zhitao Liu21 April 2022 | AIAA Journal, Vol. 60, No. 7Online Learning Behavior Feature Mining Method Based on Decision TreeJournal of Cases on Information Technology, Vol. 24, No. 5Sports Enterprise Marketing and Financial Risk Management Based on Decision Tree and Data MiningJournal of Healthcare Engineering, Vol. 2021On the application of surrogate regression models for aerodynamic coefficient prediction10 March 2021 | Complex & Intelligent Systems, Vol. 7, No. 4Dynamic prediction model of bridge project life cycle cost investment based on decision tree algorithmIOP Conference Series: Earth and Environmental Science, Vol. 760, No. 1Estimation of aerodynamic parameters near stall using maximum likelihood and extreme learning machine-based methods23 October 2020 | The Aeronautical Journal, Vol. 125, No. 1285Empirical Assessment of Deep Gaussian Process Surrogate Models for Engineering ProblemsDushhyanth Rajaram, Tejas G. Puranik, S. Ashwin Renganathan, WoongJe Sung, Olivia Pinon Fischer, Dimitri N. Mavris and Arun Ramamurthy18 September 2020 | Journal of Aircraft, Vol. 58, No. 1Semi-parametric Regression based on Machine Learning Methods for UAS Stall IdentificationIFAC-PapersOnLine, Vol. 54, No. 7 What's Popular Volume 56, Number 1January 2019 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0021-8669 (print) or 1533-3868 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAirspeedBoundary LayersComputational Fluid DynamicsFlow RegimesFluid DynamicsNumerical AnalysisUnsteady AerodynamicsVortex DynamicsWind Tunnels KeywordsFlight DataUnsteady AerodynamicsAerodynamic CoefficientsElevator DeflectionArtificial Neural NetworkFlight TestingMachine LearningHysteresisStatistical AnalysisFlow ConditionsPDF Received28 March 2018Accepted24 July 2018Published online15 October 2018" @default.
- W2895978252 created "2018-10-26" @default.
- W2895978252 creator A5002229909 @default.
- W2895978252 creator A5074044033 @default.
- W2895978252 date "2019-01-01" @default.
- W2895978252 modified "2023-10-17" @default.
- W2895978252 title "Decision Tree– and Random Forest–Based Novel Unsteady Aerodynamics Modeling Using Flight Data" @default.
- W2895978252 cites W1960653296 @default.
- W2895978252 cites W1977593520 @default.
- W2895978252 cites W1983690695 @default.
- W2895978252 cites W1990586355 @default.
- W2895978252 cites W1995840200 @default.
- W2895978252 cites W2016023958 @default.
- W2895978252 cites W2026873525 @default.
- W2895978252 cites W2028399164 @default.
- W2895978252 cites W2034239855 @default.
- W2895978252 cites W2034489756 @default.
- W2895978252 cites W2042884526 @default.
- W2895978252 cites W2049713690 @default.
- W2895978252 cites W2062864628 @default.
- W2895978252 cites W2086467951 @default.
- W2895978252 cites W2097481779 @default.
- W2895978252 cites W2129950003 @default.
- W2895978252 cites W2130794005 @default.
- W2895978252 cites W2157016658 @default.
- W2895978252 cites W2405763878 @default.
- W2895978252 cites W2419742225 @default.
- W2895978252 cites W2519625611 @default.
- W2895978252 cites W2573709304 @default.
- W2895978252 cites W2782242260 @default.
- W2895978252 cites W4213316417 @default.
- W2895978252 cites W4233159590 @default.
- W2895978252 doi "https://doi.org/10.2514/1.c035034" @default.
- W2895978252 hasPublicationYear "2019" @default.
- W2895978252 type Work @default.
- W2895978252 sameAs 2895978252 @default.
- W2895978252 citedByCount "14" @default.
- W2895978252 countsByYear W28959782522020 @default.
- W2895978252 countsByYear W28959782522021 @default.
- W2895978252 countsByYear W28959782522022 @default.
- W2895978252 countsByYear W28959782522023 @default.
- W2895978252 crossrefType "journal-article" @default.
- W2895978252 hasAuthorship W2895978252A5002229909 @default.
- W2895978252 hasAuthorship W2895978252A5074044033 @default.
- W2895978252 hasConcept C113174947 @default.
- W2895978252 hasConcept C127413603 @default.
- W2895978252 hasConcept C13393347 @default.
- W2895978252 hasConcept C134306372 @default.
- W2895978252 hasConcept C146978453 @default.
- W2895978252 hasConcept C154945302 @default.
- W2895978252 hasConcept C169258074 @default.
- W2895978252 hasConcept C33923547 @default.
- W2895978252 hasConcept C41008148 @default.
- W2895978252 hasConceptScore W2895978252C113174947 @default.
- W2895978252 hasConceptScore W2895978252C127413603 @default.
- W2895978252 hasConceptScore W2895978252C13393347 @default.
- W2895978252 hasConceptScore W2895978252C134306372 @default.
- W2895978252 hasConceptScore W2895978252C146978453 @default.
- W2895978252 hasConceptScore W2895978252C154945302 @default.
- W2895978252 hasConceptScore W2895978252C169258074 @default.
- W2895978252 hasConceptScore W2895978252C33923547 @default.
- W2895978252 hasConceptScore W2895978252C41008148 @default.
- W2895978252 hasIssue "1" @default.
- W2895978252 hasLocation W28959782521 @default.
- W2895978252 hasOpenAccess W2895978252 @default.
- W2895978252 hasPrimaryLocation W28959782521 @default.
- W2895978252 hasRelatedWork W1546989560 @default.
- W2895978252 hasRelatedWork W1924178503 @default.
- W2895978252 hasRelatedWork W2080947273 @default.
- W2895978252 hasRelatedWork W2358668433 @default.
- W2895978252 hasRelatedWork W2390279801 @default.
- W2895978252 hasRelatedWork W2748952813 @default.
- W2895978252 hasRelatedWork W2899084033 @default.
- W2895978252 hasRelatedWork W3171520305 @default.
- W2895978252 hasRelatedWork W3193043704 @default.
- W2895978252 hasRelatedWork W4386259002 @default.
- W2895978252 hasVolume "56" @default.
- W2895978252 isParatext "false" @default.
- W2895978252 isRetracted "false" @default.
- W2895978252 magId "2895978252" @default.
- W2895978252 workType "article" @default.