Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895979207> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2895979207 abstract "Cyber-physical systems often consist of entities that interact with each other over time. Meanwhile, as part of the continued digitization of industrial processes, various sensor technologies are deployed that enable us to record time-varying attributes (a.k.a., time series) of such entities, thus producing correlated time series. To enable accurate forecasting on such correlated time series, this paper proposes two models that combine convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The first model employs a CNN on each individual time series, combines the convoluted features, and then applies an RNN on top of the convoluted features in the end to enable forecasting. The second model adds additional auto-encoders into the individual CNNs, making the second model a multi-task learning model, which provides accurate and robust forecasting. Experiments on a large real-world correlated time series data set suggest that the proposed two models are effective and outperform baselines in most settings." @default.
- W2895979207 created "2018-10-26" @default.
- W2895979207 creator A5055622087 @default.
- W2895979207 creator A5071943893 @default.
- W2895979207 creator A5072309548 @default.
- W2895979207 creator A5084021933 @default.
- W2895979207 creator A5088046881 @default.
- W2895979207 date "2018-10-17" @default.
- W2895979207 modified "2023-10-14" @default.
- W2895979207 title "Correlated Time Series Forecasting using Multi-Task Deep Neural Networks" @default.
- W2895979207 cites W2069069662 @default.
- W2895979207 cites W2082107560 @default.
- W2895979207 cites W2158641899 @default.
- W2895979207 cites W2326729945 @default.
- W2895979207 cites W2525908418 @default.
- W2895979207 cites W2573698050 @default.
- W2895979207 cites W2768361919 @default.
- W2895979207 cites W2785409760 @default.
- W2895979207 cites W2895979207 @default.
- W2895979207 cites W2897668826 @default.
- W2895979207 doi "https://doi.org/10.1145/3269206.3269310" @default.
- W2895979207 hasPublicationYear "2018" @default.
- W2895979207 type Work @default.
- W2895979207 sameAs 2895979207 @default.
- W2895979207 citedByCount "56" @default.
- W2895979207 countsByYear W28959792072018 @default.
- W2895979207 countsByYear W28959792072019 @default.
- W2895979207 countsByYear W28959792072020 @default.
- W2895979207 countsByYear W28959792072021 @default.
- W2895979207 countsByYear W28959792072022 @default.
- W2895979207 countsByYear W28959792072023 @default.
- W2895979207 crossrefType "proceedings-article" @default.
- W2895979207 hasAuthorship W2895979207A5055622087 @default.
- W2895979207 hasAuthorship W2895979207A5071943893 @default.
- W2895979207 hasAuthorship W2895979207A5072309548 @default.
- W2895979207 hasAuthorship W2895979207A5084021933 @default.
- W2895979207 hasAuthorship W2895979207A5088046881 @default.
- W2895979207 hasConcept C108583219 @default.
- W2895979207 hasConcept C119857082 @default.
- W2895979207 hasConcept C124101348 @default.
- W2895979207 hasConcept C143724316 @default.
- W2895979207 hasConcept C147168706 @default.
- W2895979207 hasConcept C151406439 @default.
- W2895979207 hasConcept C151730666 @default.
- W2895979207 hasConcept C154945302 @default.
- W2895979207 hasConcept C162324750 @default.
- W2895979207 hasConcept C177264268 @default.
- W2895979207 hasConcept C187736073 @default.
- W2895979207 hasConcept C199360897 @default.
- W2895979207 hasConcept C2779308522 @default.
- W2895979207 hasConcept C2780451532 @default.
- W2895979207 hasConcept C31972630 @default.
- W2895979207 hasConcept C41008148 @default.
- W2895979207 hasConcept C50644808 @default.
- W2895979207 hasConcept C58489278 @default.
- W2895979207 hasConcept C81363708 @default.
- W2895979207 hasConcept C86803240 @default.
- W2895979207 hasConceptScore W2895979207C108583219 @default.
- W2895979207 hasConceptScore W2895979207C119857082 @default.
- W2895979207 hasConceptScore W2895979207C124101348 @default.
- W2895979207 hasConceptScore W2895979207C143724316 @default.
- W2895979207 hasConceptScore W2895979207C147168706 @default.
- W2895979207 hasConceptScore W2895979207C151406439 @default.
- W2895979207 hasConceptScore W2895979207C151730666 @default.
- W2895979207 hasConceptScore W2895979207C154945302 @default.
- W2895979207 hasConceptScore W2895979207C162324750 @default.
- W2895979207 hasConceptScore W2895979207C177264268 @default.
- W2895979207 hasConceptScore W2895979207C187736073 @default.
- W2895979207 hasConceptScore W2895979207C199360897 @default.
- W2895979207 hasConceptScore W2895979207C2779308522 @default.
- W2895979207 hasConceptScore W2895979207C2780451532 @default.
- W2895979207 hasConceptScore W2895979207C31972630 @default.
- W2895979207 hasConceptScore W2895979207C41008148 @default.
- W2895979207 hasConceptScore W2895979207C50644808 @default.
- W2895979207 hasConceptScore W2895979207C58489278 @default.
- W2895979207 hasConceptScore W2895979207C81363708 @default.
- W2895979207 hasConceptScore W2895979207C86803240 @default.
- W2895979207 hasLocation W28959792071 @default.
- W2895979207 hasOpenAccess W2895979207 @default.
- W2895979207 hasPrimaryLocation W28959792071 @default.
- W2895979207 hasRelatedWork W1643663407 @default.
- W2895979207 hasRelatedWork W2156223678 @default.
- W2895979207 hasRelatedWork W2242271381 @default.
- W2895979207 hasRelatedWork W2324097976 @default.
- W2895979207 hasRelatedWork W2357809648 @default.
- W2895979207 hasRelatedWork W2378555542 @default.
- W2895979207 hasRelatedWork W2381421930 @default.
- W2895979207 hasRelatedWork W2498331889 @default.
- W2895979207 hasRelatedWork W2990514669 @default.
- W2895979207 hasRelatedWork W1629725936 @default.
- W2895979207 isParatext "false" @default.
- W2895979207 isRetracted "false" @default.
- W2895979207 magId "2895979207" @default.
- W2895979207 workType "article" @default.