Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896035110> ?p ?o ?g. }
- W2896035110 endingPage "317" @default.
- W2896035110 startingPage "302" @default.
- W2896035110 abstract "Cherenkov light emission has been shown to correlate with ionizing radiation dose delivery in solid tissue. An important clinical application of Cherenkov light is the real-time verification of radiation treatment delivery in vivo. To test the feasibility of treatment field verification, Cherenkov light images were acquired concurrent with radiation beam delivery to standard and anthropomorphic phantoms. Specifically, we tested two clinical treatment scenarios: (a) Observation of field overlaps or gaps in matched 3D fields and (b) Patient positioning shifts during intensity modulated radiation therapy (IMRT) field delivery. Further development of this technique would allow real-time detection of treatment delivery errors on the order of millimeters so that patient safety and treatment quality can be improved.Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device (ICCD) system (Princeton Instruments). All radiation delivery was performed using a Varian Trilogy linear accelerator (linac) operated at 6 MV or 18 MV for photon and 6 MeV or 16 MeV for electron studies. Field matching studies were conducted with photon and electron beams at gantry angles of 0°, 15°, and 45°. For each modality and gantry angle, a total of three data sets were acquired. Overlap and gap distances of 0, 2, 5, and 10 mm were tested and delivered to solid phantom material of 30 × 30 × 5 cm3 . Phantom materials used were white plastic water and brown solid water. Tests were additionally performed on an anthropomorphic phantom with an irregular surface. Positioning shift studies were performed using IMRT fields delivered to a thoracic anthropomorphic phantom. For thoracic phantom measurements, the camera was placed laterally to observe the entire right side of the phantom. Fields were delivered with known translational patient positioning shifts in four directions. Changes in the Cherenkov fluence were evaluated through the generation of difference maps from unshifted Cherenkov images. All images were evaluated using ImageJ, Python, and MATLAB software packages.For matched fields, Cherenkov images were able to quantitate matched field separations with discrepancies between 2 and 4 mm, depending on gantry angle and beam energy or modality. For all photon and electron beams delivered at a gantry angle of 0°, image analysis indicated average discrepancies of less than 2 mm for all field gaps and overlaps, with 83% of matched fields exhibiting discrepancies less than 1 mm. Beams delivered obliquely to the phantom surface exhibited average discrepancies as high as 4 mm for electron beams delivered at large oblique angles. Finally, for IMRT field delivery, vertical and lateral patient positioning shifts of 2 mm were detected in some cases, indicating the potential detectability threshold of using this technique alone.Our study indicates that Cherenkov imaging can be used to support and bolster current treatment delivery verification techniques, improving our ability to recognize and rectify millimeter-scale delivery and positioning errors." @default.
- W2896035110 created "2018-10-26" @default.
- W2896035110 creator A5010095960 @default.
- W2896035110 creator A5035513710 @default.
- W2896035110 creator A5039892778 @default.
- W2896035110 creator A5052468292 @default.
- W2896035110 creator A5064803110 @default.
- W2896035110 date "2018-11-19" @default.
- W2896035110 modified "2023-10-16" @default.
- W2896035110 title "An investigation of clinical treatment field delivery verification using cherenkov imaging: IMRT positioning shifts and field matching" @default.
- W2896035110 cites W1535107408 @default.
- W2896035110 cites W1965260620 @default.
- W2896035110 cites W1969967347 @default.
- W2896035110 cites W1974996696 @default.
- W2896035110 cites W1996715706 @default.
- W2896035110 cites W2005532859 @default.
- W2896035110 cites W2009414435 @default.
- W2896035110 cites W2019289784 @default.
- W2896035110 cites W2030283514 @default.
- W2896035110 cites W2032828665 @default.
- W2896035110 cites W2033806488 @default.
- W2896035110 cites W2035371603 @default.
- W2896035110 cites W2038962469 @default.
- W2896035110 cites W2042093849 @default.
- W2896035110 cites W2050895423 @default.
- W2896035110 cites W2053232624 @default.
- W2896035110 cites W2053684539 @default.
- W2896035110 cites W2054184438 @default.
- W2896035110 cites W2058354197 @default.
- W2896035110 cites W2062491706 @default.
- W2896035110 cites W2068333777 @default.
- W2896035110 cites W2076761842 @default.
- W2896035110 cites W2078085827 @default.
- W2896035110 cites W2081044836 @default.
- W2896035110 cites W2081070906 @default.
- W2896035110 cites W2085760072 @default.
- W2896035110 cites W2094386718 @default.
- W2896035110 cites W2097599414 @default.
- W2896035110 cites W2105874637 @default.
- W2896035110 cites W2118823964 @default.
- W2896035110 cites W2120236431 @default.
- W2896035110 cites W2135228181 @default.
- W2896035110 cites W2145298574 @default.
- W2896035110 cites W2166771618 @default.
- W2896035110 cites W2167279371 @default.
- W2896035110 cites W2167767036 @default.
- W2896035110 cites W2170558029 @default.
- W2896035110 cites W2217162962 @default.
- W2896035110 cites W2417638675 @default.
- W2896035110 cites W2476346479 @default.
- W2896035110 cites W2560632494 @default.
- W2896035110 cites W2768510334 @default.
- W2896035110 cites W951690362 @default.
- W2896035110 cites W993406450 @default.
- W2896035110 cites W1984717443 @default.
- W2896035110 doi "https://doi.org/10.1002/mp.13250" @default.
- W2896035110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30346639" @default.
- W2896035110 hasPublicationYear "2018" @default.
- W2896035110 type Work @default.
- W2896035110 sameAs 2896035110 @default.
- W2896035110 citedByCount "12" @default.
- W2896035110 countsByYear W28960351102018 @default.
- W2896035110 countsByYear W28960351102020 @default.
- W2896035110 countsByYear W28960351102021 @default.
- W2896035110 countsByYear W28960351102022 @default.
- W2896035110 crossrefType "journal-article" @default.
- W2896035110 hasAuthorship W2896035110A5010095960 @default.
- W2896035110 hasAuthorship W2896035110A5035513710 @default.
- W2896035110 hasAuthorship W2896035110A5039892778 @default.
- W2896035110 hasAuthorship W2896035110A5052468292 @default.
- W2896035110 hasAuthorship W2896035110A5064803110 @default.
- W2896035110 hasBestOaLocation W28960351101 @default.
- W2896035110 hasConcept C104293457 @default.
- W2896035110 hasConcept C120665830 @default.
- W2896035110 hasConcept C121332964 @default.
- W2896035110 hasConcept C126838900 @default.
- W2896035110 hasConcept C159317903 @default.
- W2896035110 hasConcept C168834538 @default.
- W2896035110 hasConcept C180048950 @default.
- W2896035110 hasConcept C19527891 @default.
- W2896035110 hasConcept C2989005 @default.
- W2896035110 hasConcept C31601959 @default.
- W2896035110 hasConcept C71924100 @default.
- W2896035110 hasConcept C72591435 @default.
- W2896035110 hasConcept C75088862 @default.
- W2896035110 hasConcept C94915269 @default.
- W2896035110 hasConceptScore W2896035110C104293457 @default.
- W2896035110 hasConceptScore W2896035110C120665830 @default.
- W2896035110 hasConceptScore W2896035110C121332964 @default.
- W2896035110 hasConceptScore W2896035110C126838900 @default.
- W2896035110 hasConceptScore W2896035110C159317903 @default.
- W2896035110 hasConceptScore W2896035110C168834538 @default.
- W2896035110 hasConceptScore W2896035110C180048950 @default.
- W2896035110 hasConceptScore W2896035110C19527891 @default.
- W2896035110 hasConceptScore W2896035110C2989005 @default.
- W2896035110 hasConceptScore W2896035110C31601959 @default.
- W2896035110 hasConceptScore W2896035110C71924100 @default.
- W2896035110 hasConceptScore W2896035110C72591435 @default.