Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896042546> ?p ?o ?g. }
- W2896042546 endingPage "8371" @default.
- W2896042546 startingPage "8357" @default.
- W2896042546 abstract "Reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate was used to prepare three poly(glycerol monomethacrylate)x–poly(2-hydroxypropyl methacrylate)y (denoted Gx-Hy or PGMA-PHPMA) diblock copolymers, namely G37-H80, G54-H140, and G71-H200. A master phase diagram was used to select each copolymer composition to ensure that a pure worm phase was obtained in each case, as confirmed by transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS) studies. The latter technique indicated a mean worm cross-sectional diameter (or worm width) ranging from 11 to 20 nm as the mean degree of polymerization (DP) of the hydrophobic PHPMA block was increased from 80 to 200. These copolymer worms form soft hydrogels at 20 °C that undergo degelation on cooling. This thermoresponsive behavior was examined using variable temperature DLS, oscillatory rheology, and SAXS. A 10% w/w G37-H80 worm dispersion dissociated to afford an aqueous solution of molecularly dissolved copolymer chains at 2 °C; on returning to ambient temperature, these chains aggregated to form first spheres and then worms, with the original gel strength being recovered. In contrast, the G54-H140 and G71-H200 worms each only formed spheres on cooling to 2 °C, with thermoreversible (de)gelation being observed in the former case. The sphere-to-worm transition for G54-H140 was monitored by variable temperature SAXS: these experiments indicated the gradual formation of longer worms at higher temperature, with a concomitant reduction in the number of spheres, suggesting worm growth via multiple 1D sphere–sphere fusion events. DLS studies indicated that a 0.1% w/w aqueous dispersion of G71-H200 worms underwent an irreversible worm-to-sphere transition on cooling to 2 °C. Furthermore, irreversible degelation over the time scale of the experiment was also observed during rheological studies of a 10% w/w G71-H200 worm dispersion. Shear-induced polarized light imaging (SIPLI) studies revealed qualitatively different thermoreversible behavior for these three copolymer worm dispersions, although worm alignment was observed at a shear rate of 10 s–1 in each case. Subsequently conducting this technique at a lower shear rate of 1 s–1 combined with ultra small-angle x-ray scattering (USAXS) also indicated that worm branching occurred at a certain critical temperature since an upturn in viscosity, distortion in the birefringence, and a characteristic feature in the USAXS pattern were observed. Finally, SIPLI studies indicated that the characteristic relaxation times required for loss of worm alignment after cessation of shear depended markedly on the copolymer molecular weight." @default.
- W2896042546 created "2018-10-26" @default.
- W2896042546 creator A5018781580 @default.
- W2896042546 creator A5026174338 @default.
- W2896042546 creator A5026186233 @default.
- W2896042546 creator A5032487870 @default.
- W2896042546 creator A5041492754 @default.
- W2896042546 creator A5058283203 @default.
- W2896042546 creator A5061396239 @default.
- W2896042546 creator A5062201045 @default.
- W2896042546 creator A5074625582 @default.
- W2896042546 date "2018-10-16" @default.
- W2896042546 modified "2023-10-14" @default.
- W2896042546 title "Critical Dependence of Molecular Weight on Thermoresponsive Behavior of Diblock Copolymer Worm Gels in Aqueous Solution" @default.
- W2896042546 cites W1870679962 @default.
- W2896042546 cites W1932844875 @default.
- W2896042546 cites W1970457446 @default.
- W2896042546 cites W1970571815 @default.
- W2896042546 cites W1972886627 @default.
- W2896042546 cites W1974439691 @default.
- W2896042546 cites W1981402817 @default.
- W2896042546 cites W1981495061 @default.
- W2896042546 cites W1984295293 @default.
- W2896042546 cites W1989275496 @default.
- W2896042546 cites W1993964194 @default.
- W2896042546 cites W1996803632 @default.
- W2896042546 cites W2000291025 @default.
- W2896042546 cites W2000966264 @default.
- W2896042546 cites W2005139687 @default.
- W2896042546 cites W2005684248 @default.
- W2896042546 cites W2014865237 @default.
- W2896042546 cites W2022263969 @default.
- W2896042546 cites W2024560266 @default.
- W2896042546 cites W2032368146 @default.
- W2896042546 cites W2033297392 @default.
- W2896042546 cites W2034086952 @default.
- W2896042546 cites W2039364167 @default.
- W2896042546 cites W2042932016 @default.
- W2896042546 cites W2043060981 @default.
- W2896042546 cites W2049622924 @default.
- W2896042546 cites W2052301068 @default.
- W2896042546 cites W2054006697 @default.
- W2896042546 cites W2054609339 @default.
- W2896042546 cites W2058137158 @default.
- W2896042546 cites W2060333922 @default.
- W2896042546 cites W2061354475 @default.
- W2896042546 cites W2066697261 @default.
- W2896042546 cites W2070442888 @default.
- W2896042546 cites W2074370738 @default.
- W2896042546 cites W2075370047 @default.
- W2896042546 cites W2077644034 @default.
- W2896042546 cites W2078213584 @default.
- W2896042546 cites W2080411478 @default.
- W2896042546 cites W2089401957 @default.
- W2896042546 cites W2091529380 @default.
- W2896042546 cites W2094021904 @default.
- W2896042546 cites W2094674461 @default.
- W2896042546 cites W2095527210 @default.
- W2896042546 cites W2095849709 @default.
- W2896042546 cites W2097464347 @default.
- W2896042546 cites W2104558356 @default.
- W2896042546 cites W2106947391 @default.
- W2896042546 cites W2115331600 @default.
- W2896042546 cites W2121333104 @default.
- W2896042546 cites W2126605382 @default.
- W2896042546 cites W2136059582 @default.
- W2896042546 cites W2141298141 @default.
- W2896042546 cites W2166595667 @default.
- W2896042546 cites W2271277428 @default.
- W2896042546 cites W2276409082 @default.
- W2896042546 cites W2284012055 @default.
- W2896042546 cites W2298975147 @default.
- W2896042546 cites W2299380532 @default.
- W2896042546 cites W2299979350 @default.
- W2896042546 cites W2327774501 @default.
- W2896042546 cites W2329796100 @default.
- W2896042546 cites W2334906934 @default.
- W2896042546 cites W2338923690 @default.
- W2896042546 cites W2339723702 @default.
- W2896042546 cites W2340389301 @default.
- W2896042546 cites W2345661018 @default.
- W2896042546 cites W2417064421 @default.
- W2896042546 cites W2417491354 @default.
- W2896042546 cites W2440709911 @default.
- W2896042546 cites W2528871217 @default.
- W2896042546 cites W2565484372 @default.
- W2896042546 cites W2580946867 @default.
- W2896042546 cites W2590968774 @default.
- W2896042546 cites W2612056494 @default.
- W2896042546 cites W2752620064 @default.
- W2896042546 cites W2763878558 @default.
- W2896042546 cites W2885938286 @default.
- W2896042546 doi "https://doi.org/10.1021/acs.macromol.8b01617" @default.
- W2896042546 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6236470" @default.
- W2896042546 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30449901" @default.
- W2896042546 hasPublicationYear "2018" @default.
- W2896042546 type Work @default.
- W2896042546 sameAs 2896042546 @default.