Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896044719> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2896044719 endingPage "380" @default.
- W2896044719 startingPage "373" @default.
- W2896044719 abstract "Solution to the problems of direct kinematics with the help of dual cosine matrices and Klifford biquaternions is demonstrated on the example of Stanford robot arm. Derivation of the kinematics equations is performed. The obtained kinematics equations and the solution to the direct kinematics problem are used for solving the inverse kinematics problem. The new method of solving the inverse kinematics problem is based on biquaternion theory of kinematics control of free rigid body motion by using the feedback principal. Application of the method reduces solving. Cauchy problem for differential kinematic equations of a manipulator motion. Vectors of the angular and linear velocities contained in these equations are considered as controls. They are formed according to the feedback principal as certain functions of the generalized coordinates so that every chosen end effector position is asymptotically stable in the whole. In this case any particular solution to the differential kinematics equations will aspire in asymptotically stable way to the desired point in the space of the generalized coordinates corresponding to the target position of the end effector of a manipulator. As the result of solving of Cauchy problem for any given initial values of the generalized coordinates from their operational range the generalized coordinates, will finally take the values corresponding to the desired position of the end effector, so that the inverse kinematics problem will be solved. The advantages of the new method are the following: the method gives a unique solution (if there is such) for the chosen control law and given initial position; it ensures high accuracy solutions and high performance; but, above all, it is non-iterative. The paper extends and supplements the results presented in [1, 2]." @default.
- W2896044719 created "2018-10-26" @default.
- W2896044719 creator A5056718010 @default.
- W2896044719 creator A5069506033 @default.
- W2896044719 date "2015-06-01" @default.
- W2896044719 modified "2023-09-25" @default.
- W2896044719 title "Solution to the Problems of Direct and Inverse Kinematics of the Robots-Manipulators Using Dual Matrices and Biquaternions on the Example of Stanford Robot Arm. Part 1" @default.
- W2896044719 doi "https://doi.org/10.17587/mau.16.373-380" @default.
- W2896044719 hasPublicationYear "2015" @default.
- W2896044719 type Work @default.
- W2896044719 sameAs 2896044719 @default.
- W2896044719 citedByCount "1" @default.
- W2896044719 countsByYear W28960447192021 @default.
- W2896044719 crossrefType "journal-article" @default.
- W2896044719 hasAuthorship W2896044719A5056718010 @default.
- W2896044719 hasAuthorship W2896044719A5069506033 @default.
- W2896044719 hasBestOaLocation W28960447191 @default.
- W2896044719 hasConcept C10138342 @default.
- W2896044719 hasConcept C105815890 @default.
- W2896044719 hasConcept C121332964 @default.
- W2896044719 hasConcept C134306372 @default.
- W2896044719 hasConcept C14037181 @default.
- W2896044719 hasConcept C154945302 @default.
- W2896044719 hasConcept C162324750 @default.
- W2896044719 hasConcept C17816587 @default.
- W2896044719 hasConcept C198082294 @default.
- W2896044719 hasConcept C19966478 @default.
- W2896044719 hasConcept C204172952 @default.
- W2896044719 hasConcept C2775924081 @default.
- W2896044719 hasConcept C33923547 @default.
- W2896044719 hasConcept C39920418 @default.
- W2896044719 hasConcept C41008148 @default.
- W2896044719 hasConcept C47446073 @default.
- W2896044719 hasConcept C74222875 @default.
- W2896044719 hasConcept C74650414 @default.
- W2896044719 hasConcept C8652668 @default.
- W2896044719 hasConcept C90509273 @default.
- W2896044719 hasConceptScore W2896044719C10138342 @default.
- W2896044719 hasConceptScore W2896044719C105815890 @default.
- W2896044719 hasConceptScore W2896044719C121332964 @default.
- W2896044719 hasConceptScore W2896044719C134306372 @default.
- W2896044719 hasConceptScore W2896044719C14037181 @default.
- W2896044719 hasConceptScore W2896044719C154945302 @default.
- W2896044719 hasConceptScore W2896044719C162324750 @default.
- W2896044719 hasConceptScore W2896044719C17816587 @default.
- W2896044719 hasConceptScore W2896044719C198082294 @default.
- W2896044719 hasConceptScore W2896044719C19966478 @default.
- W2896044719 hasConceptScore W2896044719C204172952 @default.
- W2896044719 hasConceptScore W2896044719C2775924081 @default.
- W2896044719 hasConceptScore W2896044719C33923547 @default.
- W2896044719 hasConceptScore W2896044719C39920418 @default.
- W2896044719 hasConceptScore W2896044719C41008148 @default.
- W2896044719 hasConceptScore W2896044719C47446073 @default.
- W2896044719 hasConceptScore W2896044719C74222875 @default.
- W2896044719 hasConceptScore W2896044719C74650414 @default.
- W2896044719 hasConceptScore W2896044719C8652668 @default.
- W2896044719 hasConceptScore W2896044719C90509273 @default.
- W2896044719 hasIssue "6" @default.
- W2896044719 hasLocation W28960447191 @default.
- W2896044719 hasOpenAccess W2896044719 @default.
- W2896044719 hasPrimaryLocation W28960447191 @default.
- W2896044719 hasRelatedWork W1493869601 @default.
- W2896044719 hasRelatedWork W2080451606 @default.
- W2896044719 hasRelatedWork W2083376752 @default.
- W2896044719 hasRelatedWork W2304947037 @default.
- W2896044719 hasRelatedWork W2383683574 @default.
- W2896044719 hasRelatedWork W2466274878 @default.
- W2896044719 hasRelatedWork W2607470227 @default.
- W2896044719 hasRelatedWork W3126987580 @default.
- W2896044719 hasRelatedWork W3135439126 @default.
- W2896044719 hasRelatedWork W4283266117 @default.
- W2896044719 hasVolume "16" @default.
- W2896044719 isParatext "false" @default.
- W2896044719 isRetracted "false" @default.
- W2896044719 magId "2896044719" @default.
- W2896044719 workType "article" @default.