Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896055982> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2896055982 abstract "Abstract Rate of Penetration referrers to the speed of breaking the rock under the bit. It measures the speed or the progress of the bit when it drills the formation. It has been reported in the industry that high percentage of the well budget is spent on the drilling phase, thus many drilling operators pay close attention to this factor and try to optimize it as much as possible. However, it is very challenging to capture the effect of each individual parameter since most of them are interconnected, and changing one parameter affects the other. As a result, many companies maintain a data for the drilling performance per field and set certain benchmarks to gauge the speed of any newly drilled well. To date, no solid or reliable model exists because of the complexity of the drilling process, and one cannot capture every factor to predict the rate of penetration. Therefore, the utilization of artificial intelligence (AI) in the drilling applications will be a game changer since most of the unknown parameters are accounted for during the modeling or training process. The objective of this paper is to develop a rate of penetration model using artificial neural network (ANN) with the least possible number of inputs. Actual field data of more than 4,500 data points were used to build the model. The inputs were pumping rate, weight on bit, rotation speed, torque, stand pipe pressure and unconfined compressive strength. Well-A was used to train and test the model with 70/30 data ratio. Then two unseen data which are well-B and well-C were used to test the model. ANN was used in this study, with many sensitivity analyses to achieve the best combination of parameters. The obtained results showed that ANN can be used effectively to predict the rate of penetration with average correlation coefficient of 0.94 and average absolute percentage error of 8.6%, which shows 22% improvement over the current published methods. The best ANN model was achieved using 1 layer, 12 neurons and a linear transfer function. The developed ANN-ROP model proved to be successful using only six inputs and having a total of two wells with unseen data." @default.
- W2896055982 created "2018-10-26" @default.
- W2896055982 creator A5027294374 @default.
- W2896055982 creator A5046818830 @default.
- W2896055982 creator A5053834729 @default.
- W2896055982 creator A5071309872 @default.
- W2896055982 date "2018-04-23" @default.
- W2896055982 modified "2023-09-27" @default.
- W2896055982 title "Predicting Rate of Penetration Using Artificial Intelligence Techniques" @default.
- W2896055982 cites W1968376774 @default.
- W2896055982 cites W1984901009 @default.
- W2896055982 cites W2013345849 @default.
- W2896055982 cites W2021098490 @default.
- W2896055982 cites W2032331699 @default.
- W2896055982 cites W2040373785 @default.
- W2896055982 cites W2048116825 @default.
- W2896055982 cites W2083046984 @default.
- W2896055982 cites W2085654994 @default.
- W2896055982 cites W2095123119 @default.
- W2896055982 cites W2514971423 @default.
- W2896055982 cites W2580773761 @default.
- W2896055982 cites W2621145650 @default.
- W2896055982 doi "https://doi.org/10.2118/192343-ms" @default.
- W2896055982 hasPublicationYear "2018" @default.
- W2896055982 type Work @default.
- W2896055982 sameAs 2896055982 @default.
- W2896055982 citedByCount "15" @default.
- W2896055982 countsByYear W28960559822019 @default.
- W2896055982 countsByYear W28960559822020 @default.
- W2896055982 countsByYear W28960559822021 @default.
- W2896055982 countsByYear W28960559822022 @default.
- W2896055982 countsByYear W28960559822023 @default.
- W2896055982 crossrefType "proceedings-article" @default.
- W2896055982 hasAuthorship W2896055982A5027294374 @default.
- W2896055982 hasAuthorship W2896055982A5046818830 @default.
- W2896055982 hasAuthorship W2896055982A5053834729 @default.
- W2896055982 hasAuthorship W2896055982A5071309872 @default.
- W2896055982 hasConcept C121332964 @default.
- W2896055982 hasConcept C127413603 @default.
- W2896055982 hasConcept C144171764 @default.
- W2896055982 hasConcept C154945302 @default.
- W2896055982 hasConcept C25197100 @default.
- W2896055982 hasConcept C2776497017 @default.
- W2896055982 hasConcept C41008148 @default.
- W2896055982 hasConcept C42475967 @default.
- W2896055982 hasConcept C44154836 @default.
- W2896055982 hasConcept C50644808 @default.
- W2896055982 hasConcept C78519656 @default.
- W2896055982 hasConcept C80107235 @default.
- W2896055982 hasConcept C81063470 @default.
- W2896055982 hasConcept C97355855 @default.
- W2896055982 hasConceptScore W2896055982C121332964 @default.
- W2896055982 hasConceptScore W2896055982C127413603 @default.
- W2896055982 hasConceptScore W2896055982C144171764 @default.
- W2896055982 hasConceptScore W2896055982C154945302 @default.
- W2896055982 hasConceptScore W2896055982C25197100 @default.
- W2896055982 hasConceptScore W2896055982C2776497017 @default.
- W2896055982 hasConceptScore W2896055982C41008148 @default.
- W2896055982 hasConceptScore W2896055982C42475967 @default.
- W2896055982 hasConceptScore W2896055982C44154836 @default.
- W2896055982 hasConceptScore W2896055982C50644808 @default.
- W2896055982 hasConceptScore W2896055982C78519656 @default.
- W2896055982 hasConceptScore W2896055982C80107235 @default.
- W2896055982 hasConceptScore W2896055982C81063470 @default.
- W2896055982 hasConceptScore W2896055982C97355855 @default.
- W2896055982 hasLocation W28960559821 @default.
- W2896055982 hasOpenAccess W2896055982 @default.
- W2896055982 hasPrimaryLocation W28960559821 @default.
- W2896055982 hasRelatedWork W2003247818 @default.
- W2896055982 hasRelatedWork W2109645361 @default.
- W2896055982 hasRelatedWork W2324989408 @default.
- W2896055982 hasRelatedWork W2327532544 @default.
- W2896055982 hasRelatedWork W2597877313 @default.
- W2896055982 hasRelatedWork W2730393806 @default.
- W2896055982 hasRelatedWork W2897471854 @default.
- W2896055982 hasRelatedWork W3090642344 @default.
- W2896055982 hasRelatedWork W3102495432 @default.
- W2896055982 hasRelatedWork W3110606551 @default.
- W2896055982 isParatext "false" @default.
- W2896055982 isRetracted "false" @default.
- W2896055982 magId "2896055982" @default.
- W2896055982 workType "article" @default.