Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896057526> ?p ?o ?g. }
- W2896057526 endingPage "2357" @default.
- W2896057526 startingPage "2341" @default.
- W2896057526 abstract "Hyperspectral unmixing decomposes a hyperspectral imagery (HSI) into a number of constituent materials and associated proportions. Recently, nonnegative tensor factorization (NTF)-based methods have been proposed for hyperspectral unmixing thanks to their capability in representing an HSI without any information loss. However, tensor factorization-based HSI processing approaches often suffer from low-signal-to-noise ratio condition of HSI and nonuniqueness of the solution. This problem can be effectively alleviated by introducing various spatial constraints into tensor factorization to suppress the noise and decrease the number of extreme, stationary, and saddle points. On the other hand, total variation (TV) adaptively promotes piecewise smoothness while preserving edges. In this paper, we propose a TV regularized matrix-vector NTF method. It takes advantage of tensor factorization in preserving global spectral-spatial information and the merits of TV in exploiting local spatial information, thus generating smooth abundance maps with preserved edges. Experimental results on synthetic and real-world data show that the proposed method outperforms the state-of-the-art methods." @default.
- W2896057526 created "2018-10-26" @default.
- W2896057526 creator A5033291716 @default.
- W2896057526 creator A5059857918 @default.
- W2896057526 creator A5085140523 @default.
- W2896057526 creator A5089103033 @default.
- W2896057526 date "2019-04-01" @default.
- W2896057526 modified "2023-10-16" @default.
- W2896057526 title "Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization" @default.
- W2896057526 cites W1568416770 @default.
- W2896057526 cites W1944540851 @default.
- W2896057526 cites W1964570608 @default.
- W2896057526 cites W1993801010 @default.
- W2896057526 cites W2005106632 @default.
- W2896057526 cites W2014466433 @default.
- W2896057526 cites W2024165284 @default.
- W2896057526 cites W2030928609 @default.
- W2896057526 cites W2032944446 @default.
- W2896057526 cites W2049588365 @default.
- W2896057526 cites W2050760097 @default.
- W2896057526 cites W2063069198 @default.
- W2896057526 cites W2070424424 @default.
- W2896057526 cites W2075427932 @default.
- W2896057526 cites W2099970996 @default.
- W2896057526 cites W2103559027 @default.
- W2896057526 cites W2114486983 @default.
- W2896057526 cites W2119412403 @default.
- W2896057526 cites W2121597613 @default.
- W2896057526 cites W2127062304 @default.
- W2896057526 cites W2142224912 @default.
- W2896057526 cites W2157321686 @default.
- W2896057526 cites W2163886442 @default.
- W2896057526 cites W2165702682 @default.
- W2896057526 cites W2169466597 @default.
- W2896057526 cites W2169899245 @default.
- W2896057526 cites W2318512420 @default.
- W2896057526 cites W2344025572 @default.
- W2896057526 cites W236254921 @default.
- W2896057526 cites W2464748116 @default.
- W2896057526 cites W2469230926 @default.
- W2896057526 cites W2480706550 @default.
- W2896057526 cites W2485239183 @default.
- W2896057526 cites W2496621835 @default.
- W2896057526 cites W2506064001 @default.
- W2896057526 cites W2519420704 @default.
- W2896057526 cites W2527153419 @default.
- W2896057526 cites W2551961488 @default.
- W2896057526 cites W2565499339 @default.
- W2896057526 cites W2566771666 @default.
- W2896057526 cites W2579158572 @default.
- W2896057526 cites W2596422482 @default.
- W2896057526 cites W2604768956 @default.
- W2896057526 cites W2604977491 @default.
- W2896057526 cites W2735711969 @default.
- W2896057526 cites W2743606449 @default.
- W2896057526 cites W2748530166 @default.
- W2896057526 cites W2791545889 @default.
- W2896057526 cites W2962907479 @default.
- W2896057526 cites W3103883263 @default.
- W2896057526 cites W4292363360 @default.
- W2896057526 doi "https://doi.org/10.1109/tgrs.2018.2872888" @default.
- W2896057526 hasPublicationYear "2019" @default.
- W2896057526 type Work @default.
- W2896057526 sameAs 2896057526 @default.
- W2896057526 citedByCount "62" @default.
- W2896057526 countsByYear W28960575262019 @default.
- W2896057526 countsByYear W28960575262020 @default.
- W2896057526 countsByYear W28960575262021 @default.
- W2896057526 countsByYear W28960575262022 @default.
- W2896057526 countsByYear W28960575262023 @default.
- W2896057526 crossrefType "journal-article" @default.
- W2896057526 hasAuthorship W2896057526A5033291716 @default.
- W2896057526 hasAuthorship W2896057526A5059857918 @default.
- W2896057526 hasAuthorship W2896057526A5085140523 @default.
- W2896057526 hasAuthorship W2896057526A5089103033 @default.
- W2896057526 hasConcept C11413529 @default.
- W2896057526 hasConcept C115961682 @default.
- W2896057526 hasConcept C121332964 @default.
- W2896057526 hasConcept C134306372 @default.
- W2896057526 hasConcept C152671427 @default.
- W2896057526 hasConcept C153180895 @default.
- W2896057526 hasConcept C154945302 @default.
- W2896057526 hasConcept C155281189 @default.
- W2896057526 hasConcept C158693339 @default.
- W2896057526 hasConcept C159078339 @default.
- W2896057526 hasConcept C164660894 @default.
- W2896057526 hasConcept C187834632 @default.
- W2896057526 hasConcept C202444582 @default.
- W2896057526 hasConcept C2986737658 @default.
- W2896057526 hasConcept C33923547 @default.
- W2896057526 hasConcept C41008148 @default.
- W2896057526 hasConcept C42355184 @default.
- W2896057526 hasConcept C62520636 @default.
- W2896057526 hasConcept C99498987 @default.
- W2896057526 hasConceptScore W2896057526C11413529 @default.
- W2896057526 hasConceptScore W2896057526C115961682 @default.
- W2896057526 hasConceptScore W2896057526C121332964 @default.
- W2896057526 hasConceptScore W2896057526C134306372 @default.