Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896082859> ?p ?o ?g. }
- W2896082859 endingPage "1345" @default.
- W2896082859 startingPage "1328" @default.
- W2896082859 abstract "Abstract The work presented here aims to evaluate the capabilities of Multi‐Instrument Data Analysis System (MIDAS) compared with artificial neural networks (ANNs) to reconstruct storm‐time total electron content (TEC) over the African low‐latitude and midlatitude regions. For MIDAS, the inversion was done based on the Global Positioning System (GPS) measurements from receiver stations extending from −30 ∘ to 36 ∘ in latitude and 30 ∘ to 44 ∘ in longitude while for ANNs, individual storm‐time models based on historical GPS data from receivers within the same region covered by MIDAS were used. Based on the minimum D s t index reached during the storm period, moderate (−50 nT −100 nT), strong (−100 nT 200 nT), and severe (−200 nT 350 nT) storms were used for validation. MIDAS and ANNs results were compared with IRI‐2016 predictions and validated with real GPS TEC observations. A statistical analysis revealed that MIDAS and ANNs provide comparable results in storm‐time TEC reconstruction with average mean absolute errors of 4.81 and 4.18 TECU respectively. However, MIDAS performed better compared to ANNs in following TEC enhancements and depletions as well as short‐term features observed during the selected storm periods. In terms of latitude, it was found that on average, MIDAS performs 13% better than ANNs in the African midlatitude, while ANN model performs 24% better than MIDAS in low latitudes. Furthermore, comparisons with IRI predictions showed that both MIDAS and ANNs produce more accurate estimations of the storm‐time TEC than IRI model." @default.
- W2896082859 created "2018-10-26" @default.
- W2896082859 creator A5003686067 @default.
- W2896082859 creator A5036384263 @default.
- W2896082859 creator A5054981437 @default.
- W2896082859 creator A5080316564 @default.
- W2896082859 creator A5089837909 @default.
- W2896082859 date "2018-11-01" @default.
- W2896082859 modified "2023-09-30" @default.
- W2896082859 title "Reconstruction of Storm‐Time Total Electron Content Using Ionospheric Tomography and Artificial Neural Networks: A Comparative Study Over the African Region" @default.
- W2896082859 cites W1525970546 @default.
- W2896082859 cites W1531278767 @default.
- W2896082859 cites W1562254277 @default.
- W2896082859 cites W1586779072 @default.
- W2896082859 cites W1639283039 @default.
- W2896082859 cites W1703983607 @default.
- W2896082859 cites W1740333405 @default.
- W2896082859 cites W1794757641 @default.
- W2896082859 cites W1823108035 @default.
- W2896082859 cites W1955248895 @default.
- W2896082859 cites W1967514502 @default.
- W2896082859 cites W1987326676 @default.
- W2896082859 cites W1989570322 @default.
- W2896082859 cites W1989665358 @default.
- W2896082859 cites W1990115178 @default.
- W2896082859 cites W1998058676 @default.
- W2896082859 cites W2002442300 @default.
- W2896082859 cites W2007224040 @default.
- W2896082859 cites W2010913286 @default.
- W2896082859 cites W2021249283 @default.
- W2896082859 cites W2032936273 @default.
- W2896082859 cites W2039240409 @default.
- W2896082859 cites W2044022674 @default.
- W2896082859 cites W2048385644 @default.
- W2896082859 cites W2049280730 @default.
- W2896082859 cites W2050390051 @default.
- W2896082859 cites W2058719832 @default.
- W2896082859 cites W2059178445 @default.
- W2896082859 cites W2061515832 @default.
- W2896082859 cites W2061810887 @default.
- W2896082859 cites W2070865054 @default.
- W2896082859 cites W2073545293 @default.
- W2896082859 cites W2075859239 @default.
- W2896082859 cites W2085101070 @default.
- W2896082859 cites W2092636201 @default.
- W2896082859 cites W2095566531 @default.
- W2896082859 cites W2097890888 @default.
- W2896082859 cites W2104938891 @default.
- W2896082859 cites W2117551005 @default.
- W2896082859 cites W2145748985 @default.
- W2896082859 cites W2146077510 @default.
- W2896082859 cites W2157778798 @default.
- W2896082859 cites W2160311756 @default.
- W2896082859 cites W2170975595 @default.
- W2896082859 cites W2242783385 @default.
- W2896082859 cites W2299873724 @default.
- W2896082859 cites W2336142742 @default.
- W2896082859 cites W2482625236 @default.
- W2896082859 cites W2497736682 @default.
- W2896082859 cites W2557541498 @default.
- W2896082859 cites W2567038469 @default.
- W2896082859 cites W2750611844 @default.
- W2896082859 cites W4213019392 @default.
- W2896082859 doi "https://doi.org/10.1029/2017rs006499" @default.
- W2896082859 hasPublicationYear "2018" @default.
- W2896082859 type Work @default.
- W2896082859 sameAs 2896082859 @default.
- W2896082859 citedByCount "13" @default.
- W2896082859 countsByYear W28960828592019 @default.
- W2896082859 countsByYear W28960828592020 @default.
- W2896082859 countsByYear W28960828592021 @default.
- W2896082859 countsByYear W28960828592022 @default.
- W2896082859 countsByYear W28960828592023 @default.
- W2896082859 crossrefType "journal-article" @default.
- W2896082859 hasAuthorship W2896082859A5003686067 @default.
- W2896082859 hasAuthorship W2896082859A5036384263 @default.
- W2896082859 hasAuthorship W2896082859A5054981437 @default.
- W2896082859 hasAuthorship W2896082859A5080316564 @default.
- W2896082859 hasAuthorship W2896082859A5089837909 @default.
- W2896082859 hasBestOaLocation W28960828591 @default.
- W2896082859 hasConcept C105306849 @default.
- W2896082859 hasConcept C116403925 @default.
- W2896082859 hasConcept C122523270 @default.
- W2896082859 hasConcept C123046963 @default.
- W2896082859 hasConcept C127313418 @default.
- W2896082859 hasConcept C13280743 @default.
- W2896082859 hasConcept C153294291 @default.
- W2896082859 hasConcept C154945302 @default.
- W2896082859 hasConcept C165391973 @default.
- W2896082859 hasConcept C176379880 @default.
- W2896082859 hasConcept C18101618 @default.
- W2896082859 hasConcept C205649164 @default.
- W2896082859 hasConcept C2780554747 @default.
- W2896082859 hasConcept C39432304 @default.
- W2896082859 hasConcept C41008148 @default.
- W2896082859 hasConcept C50644808 @default.
- W2896082859 hasConcept C60229501 @default.
- W2896082859 hasConcept C76155785 @default.