Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896090924> ?p ?o ?g. }
- W2896090924 abstract "We recast the persistence probability for the spin located at the origin of a half-space arbitrarily $m$-magnetized Glauber-Ising chain as a Fredholm Pfaffian gap probability generating function with a sech-kernel. This is then spelled out as a tau-function for a certain Painlev'e VI transcendent, the persistence exponent $theta(m)/2$ emerging as an asymptotic decay rate. Using a known yet remarkable correspondence that relates Painlev'e equations to Bonnet surfaces, the persistence probability also acquires a geometric meaning in terms of the mean curvature of the latter, and even a topological one at the magnetization-symmetric point. Since the same sech-kernel with an underlying Pfaffian structure shows up in a variety of Gaussian first-passage problems, our Painlev'e VI provides their universal first-passage probability distribution, in a manner exactly analogous to the famous Painlev'e II Tracy-Widom laws. The tail behavior in the magnetization-symmetric case of our full scaling function allows to recover the exact persistence exponent $theta(0)/2=3/16$ for the $2d$-diffusing random field or for random real Kac's polynomials, a particular result found very recently by Poplavskyi and Schehr (Phys. Rev. Lett. {bf 121}, 150601 (2018)). Our Painlev'e VI tau-function characterization of the persistence probability also bears a correspondence with a $c=1$ conformal field theory, the monodromy parameters giving the dimensions of the associated primary fields. Thereby $theta(0)/2=3 beta/2$, with $beta=1/8$ the Onsager-Yang magnetization exponent for the critical $2d$ Ising model. This relates a nonequilibrium exponent to ordinary static critical behavior in one more space dimension, and suggests more generally that methods of boundary conformal field theory should be helpful for determining the critical properties of other unsolved nonequilibrium $1d$ processes." @default.
- W2896090924 created "2018-10-26" @default.
- W2896090924 creator A5086195916 @default.
- W2896090924 date "2018-10-31" @default.
- W2896090924 modified "2023-09-27" @default.
- W2896090924 title "Universal Painlevé VI Probability Distribution in Pfaffian Persistence and Gaussian First-Passage Problems with a sech-Kernel" @default.
- W2896090924 cites W1504264851 @default.
- W2896090924 cites W155730144 @default.
- W2896090924 cites W1612100996 @default.
- W2896090924 cites W1615569061 @default.
- W2896090924 cites W1964087489 @default.
- W2896090924 cites W1966696508 @default.
- W2896090924 cites W1969552299 @default.
- W2896090924 cites W1971645788 @default.
- W2896090924 cites W1971990717 @default.
- W2896090924 cites W1979796742 @default.
- W2896090924 cites W1983272724 @default.
- W2896090924 cites W1985531627 @default.
- W2896090924 cites W1986187865 @default.
- W2896090924 cites W1993746374 @default.
- W2896090924 cites W1995687053 @default.
- W2896090924 cites W1996517373 @default.
- W2896090924 cites W1997089009 @default.
- W2896090924 cites W1997584151 @default.
- W2896090924 cites W2008353555 @default.
- W2896090924 cites W2009930506 @default.
- W2896090924 cites W2013551140 @default.
- W2896090924 cites W2019996501 @default.
- W2896090924 cites W2022988654 @default.
- W2896090924 cites W2027059032 @default.
- W2896090924 cites W2031672422 @default.
- W2896090924 cites W2037488448 @default.
- W2896090924 cites W2044745523 @default.
- W2896090924 cites W2048278615 @default.
- W2896090924 cites W2050098623 @default.
- W2896090924 cites W2068554309 @default.
- W2896090924 cites W2069754508 @default.
- W2896090924 cites W2070147787 @default.
- W2896090924 cites W2074367171 @default.
- W2896090924 cites W2075947579 @default.
- W2896090924 cites W2082142453 @default.
- W2896090924 cites W2083387903 @default.
- W2896090924 cites W2085915494 @default.
- W2896090924 cites W2088012076 @default.
- W2896090924 cites W2088230793 @default.
- W2896090924 cites W2093282424 @default.
- W2896090924 cites W2097660590 @default.
- W2896090924 cites W2110902335 @default.
- W2896090924 cites W2114509411 @default.
- W2896090924 cites W2114716869 @default.
- W2896090924 cites W2119148478 @default.
- W2896090924 cites W2167103843 @default.
- W2896090924 cites W2338113466 @default.
- W2896090924 cites W2472745144 @default.
- W2896090924 cites W2499952289 @default.
- W2896090924 cites W2593708767 @default.
- W2896090924 cites W2810930295 @default.
- W2896090924 cites W2963041888 @default.
- W2896090924 cites W3101920236 @default.
- W2896090924 cites W3103709402 @default.
- W2896090924 cites W3105402597 @default.
- W2896090924 cites W3123038040 @default.
- W2896090924 cites W3712986 @default.
- W2896090924 cites W622894921 @default.
- W2896090924 hasPublicationYear "2018" @default.
- W2896090924 type Work @default.
- W2896090924 sameAs 2896090924 @default.
- W2896090924 citedByCount "0" @default.
- W2896090924 crossrefType "posted-content" @default.
- W2896090924 hasAuthorship W2896090924A5086195916 @default.
- W2896090924 hasConcept C105795698 @default.
- W2896090924 hasConcept C121332964 @default.
- W2896090924 hasConcept C121864883 @default.
- W2896090924 hasConcept C134306372 @default.
- W2896090924 hasConcept C138885662 @default.
- W2896090924 hasConcept C149441793 @default.
- W2896090924 hasConcept C163716315 @default.
- W2896090924 hasConcept C202444582 @default.
- W2896090924 hasConcept C204911207 @default.
- W2896090924 hasConcept C2775956649 @default.
- W2896090924 hasConcept C2776333733 @default.
- W2896090924 hasConcept C2780388253 @default.
- W2896090924 hasConcept C33923547 @default.
- W2896090924 hasConcept C37914503 @default.
- W2896090924 hasConcept C41895202 @default.
- W2896090924 hasConcept C51329190 @default.
- W2896090924 hasConcept C62520636 @default.
- W2896090924 hasConcept C74193536 @default.
- W2896090924 hasConceptScore W2896090924C105795698 @default.
- W2896090924 hasConceptScore W2896090924C121332964 @default.
- W2896090924 hasConceptScore W2896090924C121864883 @default.
- W2896090924 hasConceptScore W2896090924C134306372 @default.
- W2896090924 hasConceptScore W2896090924C138885662 @default.
- W2896090924 hasConceptScore W2896090924C149441793 @default.
- W2896090924 hasConceptScore W2896090924C163716315 @default.
- W2896090924 hasConceptScore W2896090924C202444582 @default.
- W2896090924 hasConceptScore W2896090924C204911207 @default.
- W2896090924 hasConceptScore W2896090924C2775956649 @default.
- W2896090924 hasConceptScore W2896090924C2776333733 @default.
- W2896090924 hasConceptScore W2896090924C2780388253 @default.