Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896092461> ?p ?o ?g. }
- W2896092461 endingPage "510" @default.
- W2896092461 startingPage "503" @default.
- W2896092461 abstract "Purpose Inverse planning is an integral part of modern low-dose-rate brachytherapy. Current clinical planning systems do not exploit the total dose information and largely use the American Association of Physicists in Medicine TG-43 dosimetry formalism to ensure clinically acceptable planning times. Thus, suboptimal plans may be derived as a result of TG-43-related dose overestimation and nonconformity with dose distribution requirements. The purpose of this study was to propose an inverse planning approach that can improve planning quality by combining dose-volume information and precision without compromising the overall execution times. Methods and Materials The dose map was generated by accumulating precomputed Monte Carlo (MC) dose kernels for each candidate source implantation site. The MC computational burden was reduced by using graphics processing unit acceleration, allowing accurate dosimetry calculations to be performed in the intraoperative environment. The proposed dose-volume histogram (DVH) fast simulated annealing optimization algorithm was evaluated using clinical plans that were delivered to 18 patients who underwent low-dose-rate prostate brachytherapy. Results Our method generated plans in 37.5 ± 3.2 seconds with similar prostate dose coverage, improved prostate dose homogeneity of up to 6.1%, and lower dose to the urethra of up to 4.0%. Conclusions A DVH-based optimization algorithm using MC dosimetry was developed. The inclusion of the DVH requirements allowed for increased control over the optimization outcome. The optimal plan's quality was further improved by considering tissue heterogeneity. Inverse planning is an integral part of modern low-dose-rate brachytherapy. Current clinical planning systems do not exploit the total dose information and largely use the American Association of Physicists in Medicine TG-43 dosimetry formalism to ensure clinically acceptable planning times. Thus, suboptimal plans may be derived as a result of TG-43-related dose overestimation and nonconformity with dose distribution requirements. The purpose of this study was to propose an inverse planning approach that can improve planning quality by combining dose-volume information and precision without compromising the overall execution times. The dose map was generated by accumulating precomputed Monte Carlo (MC) dose kernels for each candidate source implantation site. The MC computational burden was reduced by using graphics processing unit acceleration, allowing accurate dosimetry calculations to be performed in the intraoperative environment. The proposed dose-volume histogram (DVH) fast simulated annealing optimization algorithm was evaluated using clinical plans that were delivered to 18 patients who underwent low-dose-rate prostate brachytherapy. Our method generated plans in 37.5 ± 3.2 seconds with similar prostate dose coverage, improved prostate dose homogeneity of up to 6.1%, and lower dose to the urethra of up to 4.0%. A DVH-based optimization algorithm using MC dosimetry was developed. The inclusion of the DVH requirements allowed for increased control over the optimization outcome. The optimal plan's quality was further improved by considering tissue heterogeneity." @default.
- W2896092461 created "2018-10-26" @default.
- W2896092461 creator A5002799061 @default.
- W2896092461 creator A5003515248 @default.
- W2896092461 creator A5043183139 @default.
- W2896092461 date "2019-02-01" @default.
- W2896092461 modified "2023-10-06" @default.
- W2896092461 title "DVH-Based Inverse Planning Using Monte Carlo Dosimetry for LDR Prostate Brachytherapy" @default.
- W2896092461 cites W1509358020 @default.
- W2896092461 cites W154123665 @default.
- W2896092461 cites W1661046964 @default.
- W2896092461 cites W1964161449 @default.
- W2896092461 cites W1966226622 @default.
- W2896092461 cites W1980721428 @default.
- W2896092461 cites W2006989751 @default.
- W2896092461 cites W2014228954 @default.
- W2896092461 cites W2016749608 @default.
- W2896092461 cites W2023676835 @default.
- W2896092461 cites W2033492551 @default.
- W2896092461 cites W2038628001 @default.
- W2896092461 cites W2039949819 @default.
- W2896092461 cites W2041598806 @default.
- W2896092461 cites W2046505621 @default.
- W2896092461 cites W2047471272 @default.
- W2896092461 cites W2048511536 @default.
- W2896092461 cites W2049856752 @default.
- W2896092461 cites W2051175949 @default.
- W2896092461 cites W2051404332 @default.
- W2896092461 cites W2052375790 @default.
- W2896092461 cites W2064057265 @default.
- W2896092461 cites W2070974960 @default.
- W2896092461 cites W2073116238 @default.
- W2896092461 cites W2087641276 @default.
- W2896092461 cites W2087829832 @default.
- W2896092461 cites W2089573650 @default.
- W2896092461 cites W2092830812 @default.
- W2896092461 cites W2092862204 @default.
- W2896092461 cites W2105674068 @default.
- W2896092461 cites W2110034704 @default.
- W2896092461 cites W2118255823 @default.
- W2896092461 cites W2125843529 @default.
- W2896092461 cites W2128702651 @default.
- W2896092461 cites W2147544224 @default.
- W2896092461 cites W2148922754 @default.
- W2896092461 cites W2149278436 @default.
- W2896092461 cites W2170886152 @default.
- W2896092461 cites W2553481357 @default.
- W2896092461 cites W2580163862 @default.
- W2896092461 cites W2585805057 @default.
- W2896092461 cites W2766316059 @default.
- W2896092461 cites W3104118572 @default.
- W2896092461 doi "https://doi.org/10.1016/j.ijrobp.2018.09.041" @default.
- W2896092461 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30315873" @default.
- W2896092461 hasPublicationYear "2019" @default.
- W2896092461 type Work @default.
- W2896092461 sameAs 2896092461 @default.
- W2896092461 citedByCount "12" @default.
- W2896092461 countsByYear W28960924612019 @default.
- W2896092461 countsByYear W28960924612020 @default.
- W2896092461 countsByYear W28960924612021 @default.
- W2896092461 countsByYear W28960924612022 @default.
- W2896092461 countsByYear W28960924612023 @default.
- W2896092461 crossrefType "journal-article" @default.
- W2896092461 hasAuthorship W2896092461A5002799061 @default.
- W2896092461 hasAuthorship W2896092461A5003515248 @default.
- W2896092461 hasAuthorship W2896092461A5043183139 @default.
- W2896092461 hasBestOaLocation W28960924611 @default.
- W2896092461 hasConcept C105795698 @default.
- W2896092461 hasConcept C106436119 @default.
- W2896092461 hasConcept C11413529 @default.
- W2896092461 hasConcept C126838900 @default.
- W2896092461 hasConcept C126980161 @default.
- W2896092461 hasConcept C142724271 @default.
- W2896092461 hasConcept C19499675 @default.
- W2896092461 hasConcept C19527891 @default.
- W2896092461 hasConcept C201645570 @default.
- W2896092461 hasConcept C2777416452 @default.
- W2896092461 hasConcept C2778618615 @default.
- W2896092461 hasConcept C2778648096 @default.
- W2896092461 hasConcept C2989005 @default.
- W2896092461 hasConcept C33923547 @default.
- W2896092461 hasConcept C41008148 @default.
- W2896092461 hasConcept C509974204 @default.
- W2896092461 hasConcept C71924100 @default.
- W2896092461 hasConcept C75088862 @default.
- W2896092461 hasConceptScore W2896092461C105795698 @default.
- W2896092461 hasConceptScore W2896092461C106436119 @default.
- W2896092461 hasConceptScore W2896092461C11413529 @default.
- W2896092461 hasConceptScore W2896092461C126838900 @default.
- W2896092461 hasConceptScore W2896092461C126980161 @default.
- W2896092461 hasConceptScore W2896092461C142724271 @default.
- W2896092461 hasConceptScore W2896092461C19499675 @default.
- W2896092461 hasConceptScore W2896092461C19527891 @default.
- W2896092461 hasConceptScore W2896092461C201645570 @default.
- W2896092461 hasConceptScore W2896092461C2777416452 @default.
- W2896092461 hasConceptScore W2896092461C2778618615 @default.
- W2896092461 hasConceptScore W2896092461C2778648096 @default.
- W2896092461 hasConceptScore W2896092461C2989005 @default.