Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896094918> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2896094918 abstract "Abstract The rate of penetration (ROP) should be optimized during the drilling operation to avoid many problems such as cutting accumulation, pipe sticking, twist off, and to reduce the nonproductive time (NPT). ROP depends on many variables such as; drilling parameters, fluid properties, and formation strength. Previous models of ROP did not include the effect of the change in rock mechanics on the ROP prediction. Several models were developed based on a regression that is limited to the rock type and drilling conditions. The objective of this paper is to apply the self-adaptive differential evolution technique (SaDE) to optimize the artificial neural network (ANN) variable parameters such as; training function, a number of hidden layers, transferring function and number of neurons in each layer. The optimized SaDE-ANN model will be used to predict the ROP as a function of torque (T), weight on bit (WOB), stand pipe pressure (P), flow rate (Q), the drilling fluid density (D), uniaxial compressive strength (UCS), plastic viscosity (PV), and RPM The obtained results showed that ROP has a strong function of the drilling parameters; RPM, WOB, T, and horse power (HP). While ROP is a moderate function of UCS. The optimized ANN structure based on SaDE is 5-30-1; where the input layer consists of 5 neurons representing the input parameters; RPM, WOB/D, T/UCS, D/PV, and HP. The hidden layer consists of 30 neurons and the output layer contains one neuron representing the output predicted ROP. The ratio of the training and testing data was 0.6 and 0.4, respectively. The best training function was Bayesian Regularization backpropagation (trainbr) and the best transforming function was Logarithmic sigmoid (logsig). The high accuracy of the developed model confirmed the importance of compiling the drilling fluid properties with the drilling parameters." @default.
- W2896094918 created "2018-10-26" @default.
- W2896094918 creator A5046818830 @default.
- W2896094918 date "2018-04-23" @default.
- W2896094918 modified "2023-10-10" @default.
- W2896094918 title "Rate of Penetration Prediction Using Self-Adaptive Differential Evolution-Artificial Neural Network" @default.
- W2896094918 cites W1974971437 @default.
- W2896094918 cites W1996891632 @default.
- W2896094918 cites W2013345849 @default.
- W2896094918 cites W2024324964 @default.
- W2896094918 cites W2032741416 @default.
- W2896094918 cites W2070904517 @default.
- W2896094918 cites W2089051900 @default.
- W2896094918 cites W2095123119 @default.
- W2896094918 cites W2102805256 @default.
- W2896094918 cites W2485076753 @default.
- W2896094918 cites W2514971423 @default.
- W2896094918 cites W2578461787 @default.
- W2896094918 cites W2580773761 @default.
- W2896094918 cites W2616765092 @default.
- W2896094918 cites W2619365378 @default.
- W2896094918 cites W2734882971 @default.
- W2896094918 cites W2756943920 @default.
- W2896094918 cites W2775181771 @default.
- W2896094918 cites W2787249892 @default.
- W2896094918 cites W2791468853 @default.
- W2896094918 doi "https://doi.org/10.2118/192186-ms" @default.
- W2896094918 hasPublicationYear "2018" @default.
- W2896094918 type Work @default.
- W2896094918 sameAs 2896094918 @default.
- W2896094918 citedByCount "7" @default.
- W2896094918 countsByYear W28960949182021 @default.
- W2896094918 countsByYear W28960949182022 @default.
- W2896094918 countsByYear W28960949182023 @default.
- W2896094918 crossrefType "proceedings-article" @default.
- W2896094918 hasAuthorship W2896094918A5046818830 @default.
- W2896094918 hasConcept C121332964 @default.
- W2896094918 hasConcept C144171764 @default.
- W2896094918 hasConcept C154945302 @default.
- W2896094918 hasConcept C172120300 @default.
- W2896094918 hasConcept C191897082 @default.
- W2896094918 hasConcept C192562407 @default.
- W2896094918 hasConcept C25197100 @default.
- W2896094918 hasConcept C2775924081 @default.
- W2896094918 hasConcept C2776497017 @default.
- W2896094918 hasConcept C41008148 @default.
- W2896094918 hasConcept C47446073 @default.
- W2896094918 hasConcept C50644808 @default.
- W2896094918 hasConcept C57879066 @default.
- W2896094918 hasConcept C97355855 @default.
- W2896094918 hasConceptScore W2896094918C121332964 @default.
- W2896094918 hasConceptScore W2896094918C144171764 @default.
- W2896094918 hasConceptScore W2896094918C154945302 @default.
- W2896094918 hasConceptScore W2896094918C172120300 @default.
- W2896094918 hasConceptScore W2896094918C191897082 @default.
- W2896094918 hasConceptScore W2896094918C192562407 @default.
- W2896094918 hasConceptScore W2896094918C25197100 @default.
- W2896094918 hasConceptScore W2896094918C2775924081 @default.
- W2896094918 hasConceptScore W2896094918C2776497017 @default.
- W2896094918 hasConceptScore W2896094918C41008148 @default.
- W2896094918 hasConceptScore W2896094918C47446073 @default.
- W2896094918 hasConceptScore W2896094918C50644808 @default.
- W2896094918 hasConceptScore W2896094918C57879066 @default.
- W2896094918 hasConceptScore W2896094918C97355855 @default.
- W2896094918 hasLocation W28960949181 @default.
- W2896094918 hasOpenAccess W2896094918 @default.
- W2896094918 hasPrimaryLocation W28960949181 @default.
- W2896094918 hasRelatedWork W2083825302 @default.
- W2896094918 hasRelatedWork W2109645361 @default.
- W2896094918 hasRelatedWork W2316865528 @default.
- W2896094918 hasRelatedWork W2597877313 @default.
- W2896094918 hasRelatedWork W2622187196 @default.
- W2896094918 hasRelatedWork W2803327823 @default.
- W2896094918 hasRelatedWork W2897471854 @default.
- W2896094918 hasRelatedWork W2979493065 @default.
- W2896094918 hasRelatedWork W3102495432 @default.
- W2896094918 hasRelatedWork W4295861118 @default.
- W2896094918 isParatext "false" @default.
- W2896094918 isRetracted "false" @default.
- W2896094918 magId "2896094918" @default.
- W2896094918 workType "article" @default.