Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896098438> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2896098438 endingPage "37" @default.
- W2896098438 startingPage "31" @default.
- W2896098438 abstract "The number of Internet of Things (IoT) devices continues to grow with the invention of sophisticated applications in smart cities. It is forecasted that there will be 50 billion IoT devices by 2025. These large numbers of IoT devices and sensors are generating a huge amount of data in the various different formats such as plain messages, images, audio, and video. It is important to analyze this large amount of data. However, limited capabilities of IoT devices (such as low-power and computational capability) require efficient and robust methods to deal with the big data analytics. Numerous statistical techniques such as regression analysis, support vector machines, ensembles, decision trees, analysis of variance, correlation and autocorrelation, etc. led to massive amounts of data being processed in novel ways. It is important to reduce the number of variables in data before processing it. Dimension reduction is considered as an effective method to reduce the number of variables in data generated by IoT devices. In this chapter, we first present related work on dimension reduction in IoT systems. Then, we provide a detailed discussion of solutions for dimension reduction with several examples. Finally, we present conclusions and highlight open research areas for data reduction in IoT systems." @default.
- W2896098438 created "2018-10-26" @default.
- W2896098438 creator A5015745975 @default.
- W2896098438 creator A5081038628 @default.
- W2896098438 date "2018-10-13" @default.
- W2896098438 modified "2023-10-18" @default.
- W2896098438 title "Dimension Reduction for Big Data Analytics in Internet of Things" @default.
- W2896098438 cites W1810406100 @default.
- W2896098438 cites W2109574129 @default.
- W2896098438 cites W2342418099 @default.
- W2896098438 cites W2407961458 @default.
- W2896098438 cites W2480180468 @default.
- W2896098438 cites W2564157749 @default.
- W2896098438 cites W2567092460 @default.
- W2896098438 cites W2584816862 @default.
- W2896098438 doi "https://doi.org/10.1007/978-3-319-95037-2_3" @default.
- W2896098438 hasPublicationYear "2018" @default.
- W2896098438 type Work @default.
- W2896098438 sameAs 2896098438 @default.
- W2896098438 citedByCount "5" @default.
- W2896098438 countsByYear W28960984382020 @default.
- W2896098438 countsByYear W28960984382021 @default.
- W2896098438 countsByYear W28960984382022 @default.
- W2896098438 countsByYear W28960984382023 @default.
- W2896098438 crossrefType "book-chapter" @default.
- W2896098438 hasAuthorship W2896098438A5015745975 @default.
- W2896098438 hasAuthorship W2896098438A5081038628 @default.
- W2896098438 hasConcept C111335779 @default.
- W2896098438 hasConcept C119857082 @default.
- W2896098438 hasConcept C124101348 @default.
- W2896098438 hasConcept C175801342 @default.
- W2896098438 hasConcept C202444582 @default.
- W2896098438 hasConcept C2522767166 @default.
- W2896098438 hasConcept C2524010 @default.
- W2896098438 hasConcept C33676613 @default.
- W2896098438 hasConcept C33923547 @default.
- W2896098438 hasConcept C38652104 @default.
- W2896098438 hasConcept C41008148 @default.
- W2896098438 hasConcept C70518039 @default.
- W2896098438 hasConcept C75684735 @default.
- W2896098438 hasConcept C79158427 @default.
- W2896098438 hasConcept C81860439 @default.
- W2896098438 hasConceptScore W2896098438C111335779 @default.
- W2896098438 hasConceptScore W2896098438C119857082 @default.
- W2896098438 hasConceptScore W2896098438C124101348 @default.
- W2896098438 hasConceptScore W2896098438C175801342 @default.
- W2896098438 hasConceptScore W2896098438C202444582 @default.
- W2896098438 hasConceptScore W2896098438C2522767166 @default.
- W2896098438 hasConceptScore W2896098438C2524010 @default.
- W2896098438 hasConceptScore W2896098438C33676613 @default.
- W2896098438 hasConceptScore W2896098438C33923547 @default.
- W2896098438 hasConceptScore W2896098438C38652104 @default.
- W2896098438 hasConceptScore W2896098438C41008148 @default.
- W2896098438 hasConceptScore W2896098438C70518039 @default.
- W2896098438 hasConceptScore W2896098438C75684735 @default.
- W2896098438 hasConceptScore W2896098438C79158427 @default.
- W2896098438 hasConceptScore W2896098438C81860439 @default.
- W2896098438 hasLocation W28960984381 @default.
- W2896098438 hasOpenAccess W2896098438 @default.
- W2896098438 hasPrimaryLocation W28960984381 @default.
- W2896098438 hasRelatedWork W2981026493 @default.
- W2896098438 hasRelatedWork W3010741252 @default.
- W2896098438 hasRelatedWork W3025184888 @default.
- W2896098438 hasRelatedWork W3187575672 @default.
- W2896098438 hasRelatedWork W3212371498 @default.
- W2896098438 hasRelatedWork W4200181268 @default.
- W2896098438 hasRelatedWork W4200617468 @default.
- W2896098438 hasRelatedWork W4293226363 @default.
- W2896098438 hasRelatedWork W4297495548 @default.
- W2896098438 hasRelatedWork W4312072075 @default.
- W2896098438 isParatext "false" @default.
- W2896098438 isRetracted "false" @default.
- W2896098438 magId "2896098438" @default.
- W2896098438 workType "book-chapter" @default.