Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896190342> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2896190342 endingPage "590" @default.
- W2896190342 startingPage "575" @default.
- W2896190342 abstract "A sizable body of work on relative attributes provides evidence that relating pairs of images along a continuum of strength pertaining to a visual attribute yields improvements in a variety of vision tasks. In this paper, we show how emerging ideas in graph neural networks can yield a solution to various problems that broadly fall under relative attribute learning. Our main idea is the observation that relative attribute learning naturally benefits from exploiting the graph of dependencies among the different relative attributes of images, especially when only partial ordering is provided at training time. We use message passing to perform end to end learning of the image representations, their relationships as well as the interplay between different attributes. Our experiments show that this simple framework is effective in achieving competitive accuracy with specialized methods for both relative attribute learning and binary attribute prediction, while relaxing the requirements on the training data and/or the number of parameters, or both." @default.
- W2896190342 created "2018-10-26" @default.
- W2896190342 creator A5003672036 @default.
- W2896190342 creator A5011613330 @default.
- W2896190342 creator A5062158252 @default.
- W2896190342 creator A5084814930 @default.
- W2896190342 creator A5088095690 @default.
- W2896190342 date "2018-01-01" @default.
- W2896190342 modified "2023-09-23" @default.
- W2896190342 title "Efficient Relative Attribute Learning Using Graph Neural Networks" @default.
- W2896190342 cites W146395692 @default.
- W2896190342 cites W1566135517 @default.
- W2896190342 cites W2093848332 @default.
- W2896190342 cites W2098411764 @default.
- W2896190342 cites W2116341502 @default.
- W2896190342 cites W2143331230 @default.
- W2896190342 cites W2221516161 @default.
- W2896190342 cites W2294130536 @default.
- W2896190342 cites W2336317531 @default.
- W2896190342 cites W2499554887 @default.
- W2896190342 cites W2558748708 @default.
- W2896190342 cites W2606014079 @default.
- W2896190342 cites W2610366607 @default.
- W2896190342 cites W2731384148 @default.
- W2896190342 cites W2962786991 @default.
- W2896190342 cites W2963306451 @default.
- W2896190342 cites W3103850820 @default.
- W2896190342 doi "https://doi.org/10.1007/978-3-030-01264-9_34" @default.
- W2896190342 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7173331" @default.
- W2896190342 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32318687" @default.
- W2896190342 hasPublicationYear "2018" @default.
- W2896190342 type Work @default.
- W2896190342 sameAs 2896190342 @default.
- W2896190342 citedByCount "24" @default.
- W2896190342 countsByYear W28961903422018 @default.
- W2896190342 countsByYear W28961903422019 @default.
- W2896190342 countsByYear W28961903422020 @default.
- W2896190342 countsByYear W28961903422021 @default.
- W2896190342 countsByYear W28961903422022 @default.
- W2896190342 countsByYear W28961903422023 @default.
- W2896190342 crossrefType "book-chapter" @default.
- W2896190342 hasAuthorship W2896190342A5003672036 @default.
- W2896190342 hasAuthorship W2896190342A5011613330 @default.
- W2896190342 hasAuthorship W2896190342A5062158252 @default.
- W2896190342 hasAuthorship W2896190342A5084814930 @default.
- W2896190342 hasAuthorship W2896190342A5088095690 @default.
- W2896190342 hasBestOaLocation W28961903422 @default.
- W2896190342 hasConcept C119857082 @default.
- W2896190342 hasConcept C132525143 @default.
- W2896190342 hasConcept C154945302 @default.
- W2896190342 hasConcept C41008148 @default.
- W2896190342 hasConcept C50644808 @default.
- W2896190342 hasConcept C80444323 @default.
- W2896190342 hasConceptScore W2896190342C119857082 @default.
- W2896190342 hasConceptScore W2896190342C132525143 @default.
- W2896190342 hasConceptScore W2896190342C154945302 @default.
- W2896190342 hasConceptScore W2896190342C41008148 @default.
- W2896190342 hasConceptScore W2896190342C50644808 @default.
- W2896190342 hasConceptScore W2896190342C80444323 @default.
- W2896190342 hasLocation W28961903421 @default.
- W2896190342 hasLocation W28961903422 @default.
- W2896190342 hasLocation W28961903423 @default.
- W2896190342 hasLocation W28961903424 @default.
- W2896190342 hasOpenAccess W2896190342 @default.
- W2896190342 hasPrimaryLocation W28961903421 @default.
- W2896190342 hasRelatedWork W2386387936 @default.
- W2896190342 hasRelatedWork W2961085424 @default.
- W2896190342 hasRelatedWork W3046775127 @default.
- W2896190342 hasRelatedWork W3209574120 @default.
- W2896190342 hasRelatedWork W4205958290 @default.
- W2896190342 hasRelatedWork W4286629047 @default.
- W2896190342 hasRelatedWork W4306321456 @default.
- W2896190342 hasRelatedWork W4306674287 @default.
- W2896190342 hasRelatedWork W1629725936 @default.
- W2896190342 hasRelatedWork W4224009465 @default.
- W2896190342 isParatext "false" @default.
- W2896190342 isRetracted "false" @default.
- W2896190342 magId "2896190342" @default.
- W2896190342 workType "book-chapter" @default.