Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896214849> ?p ?o ?g. }
- W2896214849 endingPage "2445" @default.
- W2896214849 startingPage "2435" @default.
- W2896214849 abstract "In the era of big data, a huge amount of monitoring and manufacturing data is generated every hour. As these data are typically measured from different machines and under different working regimes, prior information and domain knowledge are highly required in order to properly analyze and utilize these data. In view of this limitation, a data-driven self-comparison approach is proposed for the monitoring of rotating machinery. In this approach, comb filtering is introduced to extract the concerned signals from multisource background noise. A Gini-guided residual singular value decomposition is then proposed to enhance local anomalies induced by early defects. Finally, an iterative Mahalanobis distance is constructed to measure the statistical deviation of monitored component from a normal state. With the proposed method, health monitoring of rotating machinery could be achieved without prior information and domain knowledge, thereby providing an automatic data processing and condition monitoring tool in big data context." @default.
- W2896214849 created "2018-10-26" @default.
- W2896214849 creator A5056499189 @default.
- W2896214849 creator A5075819798 @default.
- W2896214849 creator A5078956553 @default.
- W2896214849 date "2019-04-01" @default.
- W2896214849 modified "2023-10-17" @default.
- W2896214849 title "A Data-Driven Monitoring Scheme for Rotating Machinery Via Self-Comparison Approach" @default.
- W2896214849 cites W1411733351 @default.
- W2896214849 cites W1977020076 @default.
- W2896214849 cites W1984516393 @default.
- W2896214849 cites W1996118086 @default.
- W2896214849 cites W2021040661 @default.
- W2896214849 cites W2029608738 @default.
- W2896214849 cites W2046169585 @default.
- W2896214849 cites W2057718437 @default.
- W2896214849 cites W2101549186 @default.
- W2896214849 cites W2111854888 @default.
- W2896214849 cites W2117170950 @default.
- W2896214849 cites W2128728535 @default.
- W2896214849 cites W2139531852 @default.
- W2896214849 cites W2144182447 @default.
- W2896214849 cites W2145779795 @default.
- W2896214849 cites W2158958729 @default.
- W2896214849 cites W2268263384 @default.
- W2896214849 cites W2268544019 @default.
- W2896214849 cites W2282861635 @default.
- W2896214849 cites W2337344967 @default.
- W2896214849 cites W2346061278 @default.
- W2896214849 cites W2396886984 @default.
- W2896214849 cites W2509033629 @default.
- W2896214849 cites W2547899983 @default.
- W2896214849 cites W2567192119 @default.
- W2896214849 cites W2583356199 @default.
- W2896214849 cites W2592230399 @default.
- W2896214849 cites W2593694313 @default.
- W2896214849 cites W2611005833 @default.
- W2896214849 cites W2748752331 @default.
- W2896214849 cites W2754813553 @default.
- W2896214849 cites W2761148314 @default.
- W2896214849 cites W2763008059 @default.
- W2896214849 cites W2772437201 @default.
- W2896214849 cites W2779937602 @default.
- W2896214849 cites W2791467849 @default.
- W2896214849 cites W4236016061 @default.
- W2896214849 cites W427289305 @default.
- W2896214849 cites W596834314 @default.
- W2896214849 doi "https://doi.org/10.1109/tii.2018.2875956" @default.
- W2896214849 hasPublicationYear "2019" @default.
- W2896214849 type Work @default.
- W2896214849 sameAs 2896214849 @default.
- W2896214849 citedByCount "30" @default.
- W2896214849 countsByYear W28962148492019 @default.
- W2896214849 countsByYear W28962148492020 @default.
- W2896214849 countsByYear W28962148492021 @default.
- W2896214849 countsByYear W28962148492022 @default.
- W2896214849 countsByYear W28962148492023 @default.
- W2896214849 crossrefType "journal-article" @default.
- W2896214849 hasAuthorship W2896214849A5056499189 @default.
- W2896214849 hasAuthorship W2896214849A5075819798 @default.
- W2896214849 hasAuthorship W2896214849A5078956553 @default.
- W2896214849 hasConcept C111919701 @default.
- W2896214849 hasConcept C11413529 @default.
- W2896214849 hasConcept C115961682 @default.
- W2896214849 hasConcept C119599485 @default.
- W2896214849 hasConcept C124101348 @default.
- W2896214849 hasConcept C127413603 @default.
- W2896214849 hasConcept C134306372 @default.
- W2896214849 hasConcept C138827492 @default.
- W2896214849 hasConcept C151730666 @default.
- W2896214849 hasConcept C154945302 @default.
- W2896214849 hasConcept C155512373 @default.
- W2896214849 hasConcept C1921717 @default.
- W2896214849 hasConcept C22789450 @default.
- W2896214849 hasConcept C2775846686 @default.
- W2896214849 hasConcept C2779343474 @default.
- W2896214849 hasConcept C2780009758 @default.
- W2896214849 hasConcept C33923547 @default.
- W2896214849 hasConcept C36503486 @default.
- W2896214849 hasConcept C41008148 @default.
- W2896214849 hasConcept C67186912 @default.
- W2896214849 hasConcept C75684735 @default.
- W2896214849 hasConcept C77088390 @default.
- W2896214849 hasConcept C86803240 @default.
- W2896214849 hasConcept C99498987 @default.
- W2896214849 hasConceptScore W2896214849C111919701 @default.
- W2896214849 hasConceptScore W2896214849C11413529 @default.
- W2896214849 hasConceptScore W2896214849C115961682 @default.
- W2896214849 hasConceptScore W2896214849C119599485 @default.
- W2896214849 hasConceptScore W2896214849C124101348 @default.
- W2896214849 hasConceptScore W2896214849C127413603 @default.
- W2896214849 hasConceptScore W2896214849C134306372 @default.
- W2896214849 hasConceptScore W2896214849C138827492 @default.
- W2896214849 hasConceptScore W2896214849C151730666 @default.
- W2896214849 hasConceptScore W2896214849C154945302 @default.
- W2896214849 hasConceptScore W2896214849C155512373 @default.
- W2896214849 hasConceptScore W2896214849C1921717 @default.
- W2896214849 hasConceptScore W2896214849C22789450 @default.