Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896240243> ?p ?o ?g. }
- W2896240243 endingPage "252" @default.
- W2896240243 startingPage "240" @default.
- W2896240243 abstract "Data envelopment analysis (DEA) and stochastic frontier analysis (SFA), as well as combinations thereof, are widely applied in incentive regulation practice, where the assessment of efficiency plays a major role in regulation design and benchmarking. Using a Monte Carlo simulation experiment, this paper compares the performance of six alternative methods commonly applied by regulators. Our results demonstrate that combination approaches, such as taking the maximum or the mean over DEA and SFA efficiency scores, have certain practical merits and might offer a useful alternative to strict reliance on a singular method. In particular, the results highlight that taking the maximum not only minimizes the risk of underestimation, but can also improve the precision of efficiency estimation. Based on our results, we give recommendations for the estimation of individual efficiencies for regulation purposes and beyond." @default.
- W2896240243 created "2018-10-26" @default.
- W2896240243 creator A5026380804 @default.
- W2896240243 creator A5030077667 @default.
- W2896240243 creator A5087386082 @default.
- W2896240243 date "2019-04-01" @default.
- W2896240243 modified "2023-09-30" @default.
- W2896240243 title "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes" @default.
- W2896240243 cites W1966798225 @default.
- W2896240243 cites W1968267317 @default.
- W2896240243 cites W1978090997 @default.
- W2896240243 cites W1983961430 @default.
- W2896240243 cites W1985638399 @default.
- W2896240243 cites W1985726552 @default.
- W2896240243 cites W1988163058 @default.
- W2896240243 cites W1989737616 @default.
- W2896240243 cites W1990808695 @default.
- W2896240243 cites W2001090628 @default.
- W2896240243 cites W2006242763 @default.
- W2896240243 cites W2019023170 @default.
- W2896240243 cites W2022801758 @default.
- W2896240243 cites W2024577429 @default.
- W2896240243 cites W2029322448 @default.
- W2896240243 cites W2033640706 @default.
- W2896240243 cites W2033834012 @default.
- W2896240243 cites W2034755800 @default.
- W2896240243 cites W2035260839 @default.
- W2896240243 cites W2042221267 @default.
- W2896240243 cites W2043425503 @default.
- W2896240243 cites W2046034211 @default.
- W2896240243 cites W2046966084 @default.
- W2896240243 cites W2053565500 @default.
- W2896240243 cites W2055170657 @default.
- W2896240243 cites W2059591884 @default.
- W2896240243 cites W2060646203 @default.
- W2896240243 cites W2063022197 @default.
- W2896240243 cites W2076211381 @default.
- W2896240243 cites W2076452041 @default.
- W2896240243 cites W2092344530 @default.
- W2896240243 cites W2107578583 @default.
- W2896240243 cites W2115180499 @default.
- W2896240243 cites W2123461748 @default.
- W2896240243 cites W2129763896 @default.
- W2896240243 cites W2130476589 @default.
- W2896240243 cites W2138945711 @default.
- W2896240243 cites W2162180338 @default.
- W2896240243 cites W2171885586 @default.
- W2896240243 cites W23421786 @default.
- W2896240243 cites W2725462821 @default.
- W2896240243 cites W2738975958 @default.
- W2896240243 cites W2770562122 @default.
- W2896240243 cites W2879337610 @default.
- W2896240243 cites W3023510300 @default.
- W2896240243 cites W3125608485 @default.
- W2896240243 cites W4205338696 @default.
- W2896240243 doi "https://doi.org/10.1016/j.ejor.2018.10.007" @default.
- W2896240243 hasPublicationYear "2019" @default.
- W2896240243 type Work @default.
- W2896240243 sameAs 2896240243 @default.
- W2896240243 citedByCount "18" @default.
- W2896240243 countsByYear W28962402432019 @default.
- W2896240243 countsByYear W28962402432020 @default.
- W2896240243 countsByYear W28962402432021 @default.
- W2896240243 countsByYear W28962402432022 @default.
- W2896240243 countsByYear W28962402432023 @default.
- W2896240243 crossrefType "journal-article" @default.
- W2896240243 hasAuthorship W2896240243A5026380804 @default.
- W2896240243 hasAuthorship W2896240243A5030077667 @default.
- W2896240243 hasAuthorship W2896240243A5087386082 @default.
- W2896240243 hasBestOaLocation W28962402432 @default.
- W2896240243 hasConcept C10138342 @default.
- W2896240243 hasConcept C105795698 @default.
- W2896240243 hasConcept C112930515 @default.
- W2896240243 hasConcept C126255220 @default.
- W2896240243 hasConcept C144133560 @default.
- W2896240243 hasConcept C149782125 @default.
- W2896240243 hasConcept C162324750 @default.
- W2896240243 hasConcept C175444787 @default.
- W2896240243 hasConcept C177803969 @default.
- W2896240243 hasConcept C187736073 @default.
- W2896240243 hasConcept C19499675 @default.
- W2896240243 hasConcept C22088475 @default.
- W2896240243 hasConcept C2524010 @default.
- W2896240243 hasConcept C2778348673 @default.
- W2896240243 hasConcept C2779341709 @default.
- W2896240243 hasConcept C2780821815 @default.
- W2896240243 hasConcept C29122968 @default.
- W2896240243 hasConcept C33923547 @default.
- W2896240243 hasConcept C41008148 @default.
- W2896240243 hasConcept C42475967 @default.
- W2896240243 hasConcept C44154836 @default.
- W2896240243 hasConcept C51485801 @default.
- W2896240243 hasConcept C7493553 @default.
- W2896240243 hasConcept C86251818 @default.
- W2896240243 hasConcept C96250715 @default.
- W2896240243 hasConceptScore W2896240243C10138342 @default.
- W2896240243 hasConceptScore W2896240243C105795698 @default.
- W2896240243 hasConceptScore W2896240243C112930515 @default.