Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896283456> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2896283456 endingPage "69" @default.
- W2896283456 startingPage "69" @default.
- W2896283456 abstract "HomeRadiologyVol. 290, No. 1 PreviousNext Reviews and CommentaryFree AccessEditorialFurthering Comprehensive Right-sided Heart Pressure Analysis with Cardiac MRIPatrick M. Colletti Patrick M. Colletti Author AffiliationsFrom the Department of Radiology, Keck School of Medicine of USC, 1500 San Pablo St, Los Angeles, CA 90033.Address correspondence to the author (e-mail: [email protected]).Patrick M. Colletti Published Online:Oct 23 2018https://doi.org/10.1148/radiol.2018182214MoreSectionsPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In See also the article by Johns et al in this issue.IntroductionIn this issue of Radiology, Johns and colleagues derive and validate a comprehensive MRI method for the noninvasive estimation of mean pulmonary arterial pressure (mPAP) at right-sided heart catheterization (RHC) (1). This is a retrospective secondary analysis of prospectively collected data from the ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Center) database.The subset selected for analysis included 603 participants with contemporaneous RHC and no evidence for contributing left-sided heart abnormalities based on a normal-sized left atrium of less than 41 mL.The 603 participants were arbitrarily divided into a “derivation” cohort (n = 300) and a “validation” cohort (n = 303). Investigators then applied statistical modeling to the correlation of 30 MRI variables with right-sided heart pressure measurements while setting a threshold of at least 25 mm Hg for pulmonary hypertension. Three MRI measurements emerged as most significant: intraventricular septal angle, ventricular mass index (right ventricular mass/left ventricular mass), and black blood slow flow score. From these three measurements, two models were created: cardiac MRI mPAP model 1 (right ventricle and black blood) = −179 + loge interventricular septal angle × 42.7 + log10 ventricular mass index × 7.57 + black blood slow flow score × 3.39; and, simplified by excluding the black blood flow score, cardiac MRI mPAP model 2 (right ventricle pulmonary artery) = −231.423 + loge interventricular septal angle × 53.8 + log10 ventricular mass index × 8.708 + diastolic pulmonary artery area × 0.009.These apparently unwieldy and nonintuitive computer-generated equations with both loge and log10 factors correlate strongly with RHC-measured mPAP (in millimeters of mercury) (model 1: R = 0.80, 95% confidence interval [CI] = 0.75, 0.84; model 2: R = 0.80, 95% CI = 0.76, 0.85). Both equations also have small Bland-Altman biases (3.9% and 0.9%, respectively) with reasonable 95% agreements and intraclass coefficients of 0.78 and 0.79.This should be contrasted with the most commonly used imaging tool for documentation of suspected pulmonary hypertension, examination of the tricuspid valve for regurgitation with color Doppler echocardiology. The tricuspid valve maximum reflux velocity is measured and fit to the modified Bernoulli equation, as follows:It follows that estimated pulmonary artery pressure (in millimeters of mercury) = trans-tricuspid reflux pressure (in millimeters of mercury) + central venous pressure (in millimeters of mercury), where central venous pressure may be estimated based on ultrasonic inferior vena cava configuration or level of collapsing neck or hand veins versus the level of the right atrium with physical examination.Thus, the Doppler echocardiology method for estimating pulmonary artery pressure has the advantages of a rapid noninvasive examination with a clear physiologic basis for each of the two components.These echocardiography-based pulmonary artery pressure estimates are typically readily accomplished and useful. However, owing to limitations in transthoracic acoustic windows, they may be rather difficult to optimally perform in more than half of all patients with pulmonary hyperinflation (2).Thus, cardiac MRI as performed by Johns et al (1) and perhaps other investigators (3) may displace echocardiology as the noninvasive method of choice for the evaluation of suspected pulmonary hypertension.There are some important limitations. The three measurements, intraventricular septal angle, ventricular mass index (right ventricular mass/left ventricular mass), and black blood slow flow score, result in time-consuming analysis, with the potential for different results depending on the cardiac MRI environment where they are determined.Potential solutions to these limitations may be achieved by the future application of deep learning approaches to automate the key cardiac MRI measurements and their analyses so that right-sided heart pressure estimates may accompany all cardiac MRI reports.Disclosures of Conflicts of Interest: disclosed no relevant relationships.References1. Johns CS, Kiely DG, Rajaram S, et al. Diagnosis of pulmonary hypertension with cardiac MRI: derivation and validation of regression models. Radiology 2019;290:61–68. Link, Google Scholar2. Fisher MR, Criner GJ, Fishman AP, et al. Estimating pulmonary artery pressures by echocardiography in patients with emphysema. Eur Respir J 2007;30(5):914–921. Crossref, Medline, Google Scholar3. Roeleveld RJ, Marcus JT, Faes TJC, et al. Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology 2005;234(3):710–717. Link, Google ScholarArticle HistoryReceived: Sept 25 2018Revision requested: Oct 1 2018Revision received: Oct 4 2018Accepted: Oct 8 2018Published online: Oct 23 2018Published in print: Jan 2019 FiguresReferencesRelatedDetailsAccompanying This ArticleDiagnosis of Pulmonary Hypertension with Cardiac MRI: Derivation and Validation of Regression ModelsOct 23 2018RadiologyRecommended Articles Diagnosis of Pulmonary Hypertension with Cardiac MRI: Derivation and Validation of Regression ModelsRadiology2018Volume: 290Issue: 1pp. 61-68The Evolving Role of MRI in Pulmonary Hypertension Evaluation: A Noninvasive Approach from Diagnosis to Follow-upRadiology2018Volume: 289Issue: 1pp. 69-70Diameter of the Pulmonary Artery in Relation to the Ascending Aorta: Association with Cardiovascular OutcomeRadiology2017Volume: 284Issue: 3pp. 685-693MRI Prediction of Precapillary Pulmonary Hypertension according to the Sixth World Symposium on Pulmonary HypertensionRadiology2019Volume: 294Issue: 2pp. 482Identifying At-Risk Patients with Combined Pre- and Postcapillary Pulmonary Hypertension Using Interventricular Septal Angle at Cardiac MRIRadiology2018Volume: 289Issue: 1pp. 61-68See More RSNA Education Exhibits Emboli or Else? Beware the Pitfalls in CTEPH Diagnosis - Chronic Thromboembolic Pulmonary Hypertension Lookalikes in CT Pulmonary AngiographyDigital Posters2022The Sometimes Forgotten âLittle Brotherâ; The Right Ventricle on Adult Cardiac MRIDigital Posters2020A Stepwise Imaging Approach to Pulmonary HypertensionDigital Posters2020 RSNA Case Collection Pulmonary AtresiaRSNA Case Collection2022Eisenmenger SyndromeRSNA Case Collection2020Pulmonary artery intimal sarcomaRSNA Case Collection2021 Vol. 290, No. 1 Metrics Altmetric Score PDF download" @default.
- W2896283456 created "2018-10-26" @default.
- W2896283456 creator A5010421937 @default.
- W2896283456 date "2019-01-01" @default.
- W2896283456 modified "2023-09-23" @default.
- W2896283456 title "Furthering Comprehensive Right-sided Heart Pressure Analysis with Cardiac MRI" @default.
- W2896283456 doi "https://doi.org/10.1148/radiol.2018182214" @default.
- W2896283456 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30351257" @default.
- W2896283456 hasPublicationYear "2019" @default.
- W2896283456 type Work @default.
- W2896283456 sameAs 2896283456 @default.
- W2896283456 citedByCount "0" @default.
- W2896283456 crossrefType "journal-article" @default.
- W2896283456 hasAuthorship W2896283456A5010421937 @default.
- W2896283456 hasConcept C126322002 @default.
- W2896283456 hasConcept C126838900 @default.
- W2896283456 hasConcept C164705383 @default.
- W2896283456 hasConcept C2776127602 @default.
- W2896283456 hasConcept C2777385415 @default.
- W2896283456 hasConcept C2780930700 @default.
- W2896283456 hasConcept C2989005 @default.
- W2896283456 hasConcept C2993634958 @default.
- W2896283456 hasConcept C71924100 @default.
- W2896283456 hasConcept C72563966 @default.
- W2896283456 hasConceptScore W2896283456C126322002 @default.
- W2896283456 hasConceptScore W2896283456C126838900 @default.
- W2896283456 hasConceptScore W2896283456C164705383 @default.
- W2896283456 hasConceptScore W2896283456C2776127602 @default.
- W2896283456 hasConceptScore W2896283456C2777385415 @default.
- W2896283456 hasConceptScore W2896283456C2780930700 @default.
- W2896283456 hasConceptScore W2896283456C2989005 @default.
- W2896283456 hasConceptScore W2896283456C2993634958 @default.
- W2896283456 hasConceptScore W2896283456C71924100 @default.
- W2896283456 hasConceptScore W2896283456C72563966 @default.
- W2896283456 hasIssue "1" @default.
- W2896283456 hasLocation W28962834561 @default.
- W2896283456 hasLocation W28962834562 @default.
- W2896283456 hasOpenAccess W2896283456 @default.
- W2896283456 hasPrimaryLocation W28962834561 @default.
- W2896283456 hasRelatedWork W2076825568 @default.
- W2896283456 hasRelatedWork W2081656307 @default.
- W2896283456 hasRelatedWork W2284406891 @default.
- W2896283456 hasRelatedWork W2317094992 @default.
- W2896283456 hasRelatedWork W2348747514 @default.
- W2896283456 hasRelatedWork W252254000 @default.
- W2896283456 hasRelatedWork W2595673966 @default.
- W2896283456 hasRelatedWork W2999964781 @default.
- W2896283456 hasRelatedWork W3046437945 @default.
- W2896283456 hasRelatedWork W4294868280 @default.
- W2896283456 hasVolume "290" @default.
- W2896283456 isParatext "false" @default.
- W2896283456 isRetracted "false" @default.
- W2896283456 magId "2896283456" @default.
- W2896283456 workType "article" @default.