Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896325297> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2896325297 abstract "Recognition of fatigue status of pilots has important research significance. Aiming at the complexity and accuracy of recognition of fatigue status of pilots, a new deep learning model based on electroencephalogram signals is proposed to recognize fatigue status of pilots. Firstly, the delta wave (0.5~4Hz), theta wave (5~8Hz), alpha wave (7~14Hz) and beta wave (14~30Hz) are extracted by multi-scale decomposition of electroencephalogram signals using filters, and the reconstruction of them are input vectors of the model. Secondly, a deep contractive sparse auto-encoding network-Softmax model is proposed for identifying pilots' fatigue status and its recognition results are also compared with those of the deep auto-encoding network-Softmax and traditional PCA-Softmax model. Lastly, the results show that the proposed deep learning model not only has a nice classification, whose accuracy rate is up to 91.17%, but also the learned features is stable, and the proposed model is stable and reusable verified." @default.
- W2896325297 created "2018-10-26" @default.
- W2896325297 creator A5027614307 @default.
- W2896325297 creator A5067130233 @default.
- W2896325297 date "2018-07-01" @default.
- W2896325297 modified "2023-09-25" @default.
- W2896325297 title "Recognition of Fatigue Status of Pilots Based on Deep Contractive Sparse Auto-Encoding Network" @default.
- W2896325297 cites W1971681856 @default.
- W2896325297 cites W2059016985 @default.
- W2896325297 cites W2076063813 @default.
- W2896325297 cites W2112118949 @default.
- W2896325297 cites W2134738818 @default.
- W2896325297 cites W2136922672 @default.
- W2896325297 cites W2163922914 @default.
- W2896325297 doi "https://doi.org/10.23919/chicc.2018.8484106" @default.
- W2896325297 hasPublicationYear "2018" @default.
- W2896325297 type Work @default.
- W2896325297 sameAs 2896325297 @default.
- W2896325297 citedByCount "1" @default.
- W2896325297 countsByYear W28963252972019 @default.
- W2896325297 crossrefType "proceedings-article" @default.
- W2896325297 hasAuthorship W2896325297A5027614307 @default.
- W2896325297 hasAuthorship W2896325297A5067130233 @default.
- W2896325297 hasConcept C104122410 @default.
- W2896325297 hasConcept C108583219 @default.
- W2896325297 hasConcept C125411270 @default.
- W2896325297 hasConcept C153180895 @default.
- W2896325297 hasConcept C154945302 @default.
- W2896325297 hasConcept C188441871 @default.
- W2896325297 hasConcept C28490314 @default.
- W2896325297 hasConcept C41008148 @default.
- W2896325297 hasConceptScore W2896325297C104122410 @default.
- W2896325297 hasConceptScore W2896325297C108583219 @default.
- W2896325297 hasConceptScore W2896325297C125411270 @default.
- W2896325297 hasConceptScore W2896325297C153180895 @default.
- W2896325297 hasConceptScore W2896325297C154945302 @default.
- W2896325297 hasConceptScore W2896325297C188441871 @default.
- W2896325297 hasConceptScore W2896325297C28490314 @default.
- W2896325297 hasConceptScore W2896325297C41008148 @default.
- W2896325297 hasLocation W28963252971 @default.
- W2896325297 hasOpenAccess W2896325297 @default.
- W2896325297 hasPrimaryLocation W28963252971 @default.
- W2896325297 hasRelatedWork W2621864722 @default.
- W2896325297 hasRelatedWork W2743258233 @default.
- W2896325297 hasRelatedWork W2758063741 @default.
- W2896325297 hasRelatedWork W2834652171 @default.
- W2896325297 hasRelatedWork W2963480192 @default.
- W2896325297 hasRelatedWork W3000648255 @default.
- W2896325297 hasRelatedWork W3013493337 @default.
- W2896325297 hasRelatedWork W3131457563 @default.
- W2896325297 hasRelatedWork W3186918158 @default.
- W2896325297 hasRelatedWork W3202244193 @default.
- W2896325297 isParatext "false" @default.
- W2896325297 isRetracted "false" @default.
- W2896325297 magId "2896325297" @default.
- W2896325297 workType "article" @default.