Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896371758> ?p ?o ?g. }
- W2896371758 endingPage "263" @default.
- W2896371758 startingPage "255" @default.
- W2896371758 abstract "In this manuscript, we present the results of a systematic approach to investigate the impact of core scale heterogeneity on the efficiency of miscible CO2 water-alternating-gas (WAG) flooding performance. Both vertical (by layering two axially-cut half plugs with differing permeability) and horizontal (stacking two smaller core samples with differing permeability in series) heterogeneities are explored. In the layered or vertically heterogeneous sample, the permeability ratio (PR) defines the ratio between the permeability values of each half plug. Our special sample construction technique using either a thin impermeable Teflon sheet to prevent flow communication or a thin tissue to promote flow communication has enabled us to investigate the effect of crossflow between half plug on the performance of the WAG flood. For the stacked composite or the horizontally heterogeneous core samples, short cylindrical core segments were used each with a different permeability value. We have also investigated the effect of the EOR injection mode (i.e. secondary vs. tertiary) on our results. For this study, core flooding experiments were performed using n-C10, brine and CO2 at a temperature of 343 K and a pressure of 12.4 MPa. The results obtained for homogeneous, layered and composite samples indicate that CO2 WAG flood performs better in all cases and achieves the highest recovery factor (RF) when conducted under the secondary mode (e.g. homogeneous: 93.4%, layered: 74.0%, and composite: 90.9%) compared with the tertiary mode (e.g. homogeneous: 74.2%, layered: 64.1%, and composite: 71.3%). For the layered samples, it was found that the oil recovery decreases noticeably with an increase in the permeability ratio (PR). For instance, RFs of 93.4%, 90.1%, 78.8%, and 74.0% correspond to PRs of 1, 2.5, 5, and 12.5, respectively. In contrast to our previous findings with continuous CO2 flooding which showed that crossflow enhances recovery in layered samples, for this study using WAG, crossflow was found to negatively affect the RF. Such an outcome may be attributed to the conformance control achieved by WAG flooding which would be more pronounced in the case of non-communication layers (i.e. no cross flow). In other words, the higher oil recovery of WAG flooding in a non-communicating system may be due to the dominance of viscous forces and, to a lesser extent, the vanishing effect of gravity forces that tend to reduce sweep efficiency. The effect of composite heterogeneity on the RF was also investigated with the results showing that the permeability sequence along the length of a composite sample has a noticeable but more subtle impact on RF." @default.
- W2896371758 created "2018-10-26" @default.
- W2896371758 creator A5016215371 @default.
- W2896371758 creator A5038325947 @default.
- W2896371758 creator A5053736417 @default.
- W2896371758 creator A5074151510 @default.
- W2896371758 creator A5085187615 @default.
- W2896371758 creator A5087935146 @default.
- W2896371758 date "2018-12-01" @default.
- W2896371758 modified "2023-10-18" @default.
- W2896371758 title "Insight investigation of miscible SCCO2 Water Alternating Gas (WAG) injection performance in heterogeneous sandstone reservoirs" @default.
- W2896371758 cites W1805520082 @default.
- W2896371758 cites W1872366976 @default.
- W2896371758 cites W1963933714 @default.
- W2896371758 cites W1969979221 @default.
- W2896371758 cites W1978102978 @default.
- W2896371758 cites W1979688148 @default.
- W2896371758 cites W1979772748 @default.
- W2896371758 cites W1983332011 @default.
- W2896371758 cites W1986103854 @default.
- W2896371758 cites W1991882462 @default.
- W2896371758 cites W2004465380 @default.
- W2896371758 cites W2006770296 @default.
- W2896371758 cites W2009329472 @default.
- W2896371758 cites W2012628831 @default.
- W2896371758 cites W2019667851 @default.
- W2896371758 cites W2022101619 @default.
- W2896371758 cites W2024949041 @default.
- W2896371758 cites W2032500651 @default.
- W2896371758 cites W2032529177 @default.
- W2896371758 cites W2037316434 @default.
- W2896371758 cites W2043978115 @default.
- W2896371758 cites W2045013823 @default.
- W2896371758 cites W2051890803 @default.
- W2896371758 cites W2063015702 @default.
- W2896371758 cites W2068967240 @default.
- W2896371758 cites W2069626340 @default.
- W2896371758 cites W2075338008 @default.
- W2896371758 cites W2078169988 @default.
- W2896371758 cites W2079451110 @default.
- W2896371758 cites W2082913560 @default.
- W2896371758 cites W2087779070 @default.
- W2896371758 cites W2094619209 @default.
- W2896371758 cites W2129393163 @default.
- W2896371758 cites W2141787314 @default.
- W2896371758 cites W2151782618 @default.
- W2896371758 cites W2317396987 @default.
- W2896371758 cites W2322292507 @default.
- W2896371758 cites W2516312701 @default.
- W2896371758 cites W2524646894 @default.
- W2896371758 cites W2607939660 @default.
- W2896371758 cites W2741803356 @default.
- W2896371758 cites W2802310835 @default.
- W2896371758 cites W2883325190 @default.
- W2896371758 cites W364960419 @default.
- W2896371758 cites W4238711599 @default.
- W2896371758 cites W4243954461 @default.
- W2896371758 doi "https://doi.org/10.1016/j.jcou.2018.10.010" @default.
- W2896371758 hasPublicationYear "2018" @default.
- W2896371758 type Work @default.
- W2896371758 sameAs 2896371758 @default.
- W2896371758 citedByCount "27" @default.
- W2896371758 countsByYear W28963717582019 @default.
- W2896371758 countsByYear W28963717582020 @default.
- W2896371758 countsByYear W28963717582021 @default.
- W2896371758 countsByYear W28963717582022 @default.
- W2896371758 countsByYear W28963717582023 @default.
- W2896371758 crossrefType "journal-article" @default.
- W2896371758 hasAuthorship W2896371758A5016215371 @default.
- W2896371758 hasAuthorship W2896371758A5038325947 @default.
- W2896371758 hasAuthorship W2896371758A5053736417 @default.
- W2896371758 hasAuthorship W2896371758A5074151510 @default.
- W2896371758 hasAuthorship W2896371758A5085187615 @default.
- W2896371758 hasAuthorship W2896371758A5087935146 @default.
- W2896371758 hasConcept C104779481 @default.
- W2896371758 hasConcept C120882062 @default.
- W2896371758 hasConcept C121332964 @default.
- W2896371758 hasConcept C127313418 @default.
- W2896371758 hasConcept C127413603 @default.
- W2896371758 hasConcept C146978453 @default.
- W2896371758 hasConcept C159985019 @default.
- W2896371758 hasConcept C164205550 @default.
- W2896371758 hasConcept C176055353 @default.
- W2896371758 hasConcept C185592680 @default.
- W2896371758 hasConcept C192562407 @default.
- W2896371758 hasConcept C41625074 @default.
- W2896371758 hasConcept C55493867 @default.
- W2896371758 hasConcept C59822182 @default.
- W2896371758 hasConcept C66882249 @default.
- W2896371758 hasConcept C86803240 @default.
- W2896371758 hasConcept C97355855 @default.
- W2896371758 hasConceptScore W2896371758C104779481 @default.
- W2896371758 hasConceptScore W2896371758C120882062 @default.
- W2896371758 hasConceptScore W2896371758C121332964 @default.
- W2896371758 hasConceptScore W2896371758C127313418 @default.
- W2896371758 hasConceptScore W2896371758C127413603 @default.
- W2896371758 hasConceptScore W2896371758C146978453 @default.
- W2896371758 hasConceptScore W2896371758C159985019 @default.