Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896384138> ?p ?o ?g. }
- W2896384138 endingPage "639" @default.
- W2896384138 startingPage "625" @default.
- W2896384138 abstract "Clustering based unsupervised segmentation approaches have become important tools to model data and infer knowledge. Such approaches are often used in various biomedical applications to assist experts in analyzing the data. Segmentation of brain magnetic resonance (MR) images has become a very challenging task due to the presence of Rician noise and intensity inhomogeneity. The existing methods dealing with such issues work in the spatial domain. These methods are prone to losing image details while reducing the effect of noise. The proposed method works in the moment domain, and for this purpose, we have selected Zernike moments (ZMs). The ZMs are orthogonal, rotation invariant and robust to image noise. The proposed method is based on our previous work on Zernike moments-based unbiased nonlocal means (ZM-UNLM) approach for denoising MR images affected by the Rician noise. The ZM-UNLM-based approach uses both the local and nonlocal information while eliminating Rician noise from brain MR images which have fine image details along with the noise components. Keeping in view the superior performance of the ZM-UNLM, we extend it to segment brain MR images and propose a method called local ZMs (LZM)-based unbiased nonlocal means fuzzy C-means (LZM-UNLM-FCM) approach which provides much-improved segmentation accuracy as compared to the existing spatial domain-based state-of-the-art techniques. It is shown how the LZMs based technique reduces the effect of the Rician noise while retaining the fine structures, edges, and other image details in the moment domain. The complete framework consists of an intelligent knowledge-driven approach that segments tissues from brain MR images using both the local and nonlocal information in the moment domain. The proposed approach has significance in developing future expert and intelligent systems that do not require any human intervention to manually annotate data and saves time for diagnostic related tasks. Detailed experimental results are provided to demonstrate the superior performance of the proposed method over the existing state-of-the-art methods." @default.
- W2896384138 created "2018-10-26" @default.
- W2896384138 creator A5031613595 @default.
- W2896384138 creator A5034904478 @default.
- W2896384138 date "2019-03-01" @default.
- W2896384138 modified "2023-10-18" @default.
- W2896384138 title "A local Zernike moment-based unbiased nonlocal means fuzzy C-Means algorithm for segmentation of brain magnetic resonance images" @default.
- W2896384138 cites W1899329334 @default.
- W2896384138 cites W1909740415 @default.
- W2896384138 cites W1922318660 @default.
- W2896384138 cites W1967551258 @default.
- W2896384138 cites W1972168313 @default.
- W2896384138 cites W1974361517 @default.
- W2896384138 cites W1975755501 @default.
- W2896384138 cites W1992147426 @default.
- W2896384138 cites W1992873377 @default.
- W2896384138 cites W1994108784 @default.
- W2896384138 cites W1995450389 @default.
- W2896384138 cites W1998070036 @default.
- W2896384138 cites W1998109127 @default.
- W2896384138 cites W2012425475 @default.
- W2896384138 cites W2012742622 @default.
- W2896384138 cites W2032309205 @default.
- W2896384138 cites W2038283125 @default.
- W2896384138 cites W2045105614 @default.
- W2896384138 cites W2052809847 @default.
- W2896384138 cites W2054612454 @default.
- W2896384138 cites W2055783626 @default.
- W2896384138 cites W2059784307 @default.
- W2896384138 cites W2061800457 @default.
- W2896384138 cites W2063557866 @default.
- W2896384138 cites W2064395451 @default.
- W2896384138 cites W2066642911 @default.
- W2896384138 cites W2070813603 @default.
- W2896384138 cites W2073660032 @default.
- W2896384138 cites W2075500778 @default.
- W2896384138 cites W2081245663 @default.
- W2896384138 cites W2108859253 @default.
- W2896384138 cites W2115242586 @default.
- W2896384138 cites W2118376687 @default.
- W2896384138 cites W2132140814 @default.
- W2896384138 cites W2132322720 @default.
- W2896384138 cites W2136573752 @default.
- W2896384138 cites W2138234438 @default.
- W2896384138 cites W2152012752 @default.
- W2896384138 cites W2159917172 @default.
- W2896384138 cites W2163352848 @default.
- W2896384138 cites W2165012164 @default.
- W2896384138 cites W2216555353 @default.
- W2896384138 cites W2297866175 @default.
- W2896384138 cites W2466355387 @default.
- W2896384138 cites W2475163690 @default.
- W2896384138 cites W2520303620 @default.
- W2896384138 cites W2594130382 @default.
- W2896384138 cites W611000878 @default.
- W2896384138 doi "https://doi.org/10.1016/j.eswa.2018.10.023" @default.
- W2896384138 hasPublicationYear "2019" @default.
- W2896384138 type Work @default.
- W2896384138 sameAs 2896384138 @default.
- W2896384138 citedByCount "19" @default.
- W2896384138 countsByYear W28963841382019 @default.
- W2896384138 countsByYear W28963841382020 @default.
- W2896384138 countsByYear W28963841382021 @default.
- W2896384138 countsByYear W28963841382022 @default.
- W2896384138 countsByYear W28963841382023 @default.
- W2896384138 crossrefType "journal-article" @default.
- W2896384138 hasAuthorship W2896384138A5031613595 @default.
- W2896384138 hasAuthorship W2896384138A5034904478 @default.
- W2896384138 hasConcept C11413529 @default.
- W2896384138 hasConcept C115961682 @default.
- W2896384138 hasConcept C120665830 @default.
- W2896384138 hasConcept C121332964 @default.
- W2896384138 hasConcept C153180895 @default.
- W2896384138 hasConcept C154945302 @default.
- W2896384138 hasConcept C165699331 @default.
- W2896384138 hasConcept C179254644 @default.
- W2896384138 hasConcept C31972630 @default.
- W2896384138 hasConcept C41008148 @default.
- W2896384138 hasConcept C57273362 @default.
- W2896384138 hasConcept C58166 @default.
- W2896384138 hasConcept C60472773 @default.
- W2896384138 hasConcept C73555534 @default.
- W2896384138 hasConcept C74650414 @default.
- W2896384138 hasConcept C81978471 @default.
- W2896384138 hasConcept C89600930 @default.
- W2896384138 hasConcept C92423082 @default.
- W2896384138 hasConcept C99498987 @default.
- W2896384138 hasConceptScore W2896384138C11413529 @default.
- W2896384138 hasConceptScore W2896384138C115961682 @default.
- W2896384138 hasConceptScore W2896384138C120665830 @default.
- W2896384138 hasConceptScore W2896384138C121332964 @default.
- W2896384138 hasConceptScore W2896384138C153180895 @default.
- W2896384138 hasConceptScore W2896384138C154945302 @default.
- W2896384138 hasConceptScore W2896384138C165699331 @default.
- W2896384138 hasConceptScore W2896384138C179254644 @default.
- W2896384138 hasConceptScore W2896384138C31972630 @default.
- W2896384138 hasConceptScore W2896384138C41008148 @default.
- W2896384138 hasConceptScore W2896384138C57273362 @default.