Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896411932> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2896411932 endingPage "377" @default.
- W2896411932 startingPage "368" @default.
- W2896411932 abstract "Language model is one of the basic research issues of natural language processing, and which is the premise for realizing more complicated tasks such as speech recognition, machine translation and question answering system. In recent years, neural network language model has become a research hotspot, which greatly enhances the application effect of language model. In this paper, a recurrent neural network language model (RNNLM) based on word embedding is proposed, and the word embedding of each word is generated by pre-training the text data with skip-gram model. The n-gram language model, RNNLM based on one-hot and RNNLM based on word embedding are evaluated on three different public datasets. The experimental results show that the RNNLM based on word embedding performs best, and which can reduce the perplexity of language model significantly." @default.
- W2896411932 created "2018-10-26" @default.
- W2896411932 creator A5016973102 @default.
- W2896411932 creator A5085846056 @default.
- W2896411932 date "2018-01-01" @default.
- W2896411932 modified "2023-09-25" @default.
- W2896411932 title "A Recurrent Neural Network Language Model Based on Word Embedding" @default.
- W2896411932 cites W1631260214 @default.
- W2896411932 cites W2171928131 @default.
- W2896411932 cites W4245267204 @default.
- W2896411932 doi "https://doi.org/10.1007/978-3-030-01298-4_30" @default.
- W2896411932 hasPublicationYear "2018" @default.
- W2896411932 type Work @default.
- W2896411932 sameAs 2896411932 @default.
- W2896411932 citedByCount "4" @default.
- W2896411932 countsByYear W28964119322019 @default.
- W2896411932 countsByYear W28964119322020 @default.
- W2896411932 countsByYear W28964119322022 @default.
- W2896411932 crossrefType "book-chapter" @default.
- W2896411932 hasAuthorship W2896411932A5016973102 @default.
- W2896411932 hasAuthorship W2896411932A5085846056 @default.
- W2896411932 hasConcept C100279451 @default.
- W2896411932 hasConcept C129353971 @default.
- W2896411932 hasConcept C137293760 @default.
- W2896411932 hasConcept C138885662 @default.
- W2896411932 hasConcept C147168706 @default.
- W2896411932 hasConcept C154945302 @default.
- W2896411932 hasConcept C195324797 @default.
- W2896411932 hasConcept C203005215 @default.
- W2896411932 hasConcept C204321447 @default.
- W2896411932 hasConcept C2777462759 @default.
- W2896411932 hasConcept C28490314 @default.
- W2896411932 hasConcept C39608478 @default.
- W2896411932 hasConcept C41008148 @default.
- W2896411932 hasConcept C41608201 @default.
- W2896411932 hasConcept C41895202 @default.
- W2896411932 hasConcept C50644808 @default.
- W2896411932 hasConcept C83479923 @default.
- W2896411932 hasConcept C90805587 @default.
- W2896411932 hasConceptScore W2896411932C100279451 @default.
- W2896411932 hasConceptScore W2896411932C129353971 @default.
- W2896411932 hasConceptScore W2896411932C137293760 @default.
- W2896411932 hasConceptScore W2896411932C138885662 @default.
- W2896411932 hasConceptScore W2896411932C147168706 @default.
- W2896411932 hasConceptScore W2896411932C154945302 @default.
- W2896411932 hasConceptScore W2896411932C195324797 @default.
- W2896411932 hasConceptScore W2896411932C203005215 @default.
- W2896411932 hasConceptScore W2896411932C204321447 @default.
- W2896411932 hasConceptScore W2896411932C2777462759 @default.
- W2896411932 hasConceptScore W2896411932C28490314 @default.
- W2896411932 hasConceptScore W2896411932C39608478 @default.
- W2896411932 hasConceptScore W2896411932C41008148 @default.
- W2896411932 hasConceptScore W2896411932C41608201 @default.
- W2896411932 hasConceptScore W2896411932C41895202 @default.
- W2896411932 hasConceptScore W2896411932C50644808 @default.
- W2896411932 hasConceptScore W2896411932C83479923 @default.
- W2896411932 hasConceptScore W2896411932C90805587 @default.
- W2896411932 hasLocation W28964119321 @default.
- W2896411932 hasOpenAccess W2896411932 @default.
- W2896411932 hasPrimaryLocation W28964119321 @default.
- W2896411932 hasRelatedWork W1512898506 @default.
- W2896411932 hasRelatedWork W2029461472 @default.
- W2896411932 hasRelatedWork W2091981305 @default.
- W2896411932 hasRelatedWork W2092315878 @default.
- W2896411932 hasRelatedWork W2171645483 @default.
- W2896411932 hasRelatedWork W2345190899 @default.
- W2896411932 hasRelatedWork W2408289839 @default.
- W2896411932 hasRelatedWork W2513592917 @default.
- W2896411932 hasRelatedWork W2594897229 @default.
- W2896411932 hasRelatedWork W2638027694 @default.
- W2896411932 hasRelatedWork W2802184895 @default.
- W2896411932 hasRelatedWork W2802566028 @default.
- W2896411932 hasRelatedWork W2808971413 @default.
- W2896411932 hasRelatedWork W2909792778 @default.
- W2896411932 hasRelatedWork W2944691285 @default.
- W2896411932 hasRelatedWork W2952613254 @default.
- W2896411932 hasRelatedWork W3027063813 @default.
- W2896411932 hasRelatedWork W3102259066 @default.
- W2896411932 hasRelatedWork W3116004231 @default.
- W2896411932 hasRelatedWork W2860782172 @default.
- W2896411932 isParatext "false" @default.
- W2896411932 isRetracted "false" @default.
- W2896411932 magId "2896411932" @default.
- W2896411932 workType "book-chapter" @default.