Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896415448> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2896415448 endingPage "197" @default.
- W2896415448 startingPage "187" @default.
- W2896415448 abstract "As autonomy becomes prevalent in many applications, ranging from recommendation systems to fully autonomous vehicles, there is an increased need to provide safety guarantees for such systems. The problem is difficult, as these are large, complex systems which operate in uncertain environments, requiring data-driven machine-learning components. However, learning techniques such as Deep Neural Networks, widely used today, are inherently unpredictable and lack the theoretical foundations to provide strong assurance guarantees. We present a compositional approach for the scalable, formal verification of autonomous systems that contain Deep Neural Network components. The approach uses assume-guarantee reasoning whereby {em contracts}, encoding the input-output behavior of individual components, allow the designer to model and incorporate the behavior of the learning-enabled components working side-by-side with the other components. We illustrate the approach on an example taken from the autonomous vehicles domain." @default.
- W2896415448 created "2018-10-26" @default.
- W2896415448 creator A5024261384 @default.
- W2896415448 creator A5053134485 @default.
- W2896415448 creator A5055334891 @default.
- W2896415448 date "2018-11-15" @default.
- W2896415448 modified "2023-10-06" @default.
- W2896415448 title "Compositional Verification for Autonomous Systems with Deep Learning Components" @default.
- W2896415448 cites W2117013774 @default.
- W2896415448 cites W2140818581 @default.
- W2896415448 cites W2143787859 @default.
- W2896415448 cites W2161160262 @default.
- W2896415448 cites W2531728244 @default.
- W2896415448 cites W2543296129 @default.
- W2896415448 cites W2594877703 @default.
- W2896415448 cites W2963857521 @default.
- W2896415448 doi "https://doi.org/10.1007/978-3-319-97301-2_10" @default.
- W2896415448 hasPublicationYear "2018" @default.
- W2896415448 type Work @default.
- W2896415448 sameAs 2896415448 @default.
- W2896415448 citedByCount "10" @default.
- W2896415448 countsByYear W28964154482019 @default.
- W2896415448 countsByYear W28964154482021 @default.
- W2896415448 countsByYear W28964154482022 @default.
- W2896415448 countsByYear W28964154482023 @default.
- W2896415448 crossrefType "book-chapter" @default.
- W2896415448 hasAuthorship W2896415448A5024261384 @default.
- W2896415448 hasAuthorship W2896415448A5053134485 @default.
- W2896415448 hasAuthorship W2896415448A5055334891 @default.
- W2896415448 hasBestOaLocation W28964154482 @default.
- W2896415448 hasConcept C108583219 @default.
- W2896415448 hasConcept C120314980 @default.
- W2896415448 hasConcept C121332964 @default.
- W2896415448 hasConcept C134306372 @default.
- W2896415448 hasConcept C154945302 @default.
- W2896415448 hasConcept C168167062 @default.
- W2896415448 hasConcept C33923547 @default.
- W2896415448 hasConcept C36503486 @default.
- W2896415448 hasConcept C41008148 @default.
- W2896415448 hasConcept C48044578 @default.
- W2896415448 hasConcept C50644808 @default.
- W2896415448 hasConcept C77088390 @default.
- W2896415448 hasConcept C97355855 @default.
- W2896415448 hasConceptScore W2896415448C108583219 @default.
- W2896415448 hasConceptScore W2896415448C120314980 @default.
- W2896415448 hasConceptScore W2896415448C121332964 @default.
- W2896415448 hasConceptScore W2896415448C134306372 @default.
- W2896415448 hasConceptScore W2896415448C154945302 @default.
- W2896415448 hasConceptScore W2896415448C168167062 @default.
- W2896415448 hasConceptScore W2896415448C33923547 @default.
- W2896415448 hasConceptScore W2896415448C36503486 @default.
- W2896415448 hasConceptScore W2896415448C41008148 @default.
- W2896415448 hasConceptScore W2896415448C48044578 @default.
- W2896415448 hasConceptScore W2896415448C50644808 @default.
- W2896415448 hasConceptScore W2896415448C77088390 @default.
- W2896415448 hasConceptScore W2896415448C97355855 @default.
- W2896415448 hasLocation W28964154481 @default.
- W2896415448 hasLocation W28964154482 @default.
- W2896415448 hasOpenAccess W2896415448 @default.
- W2896415448 hasPrimaryLocation W28964154481 @default.
- W2896415448 hasRelatedWork W1532321934 @default.
- W2896415448 hasRelatedWork W1543428583 @default.
- W2896415448 hasRelatedWork W2042403141 @default.
- W2896415448 hasRelatedWork W2042672970 @default.
- W2896415448 hasRelatedWork W2354691487 @default.
- W2896415448 hasRelatedWork W2364921833 @default.
- W2896415448 hasRelatedWork W2889705046 @default.
- W2896415448 hasRelatedWork W2949280030 @default.
- W2896415448 hasRelatedWork W4223943233 @default.
- W2896415448 hasRelatedWork W4225070666 @default.
- W2896415448 isParatext "false" @default.
- W2896415448 isRetracted "false" @default.
- W2896415448 magId "2896415448" @default.
- W2896415448 workType "book-chapter" @default.