Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896415923> ?p ?o ?g. }
- W2896415923 endingPage "2833" @default.
- W2896415923 startingPage "2818" @default.
- W2896415923 abstract "We report empirical study results on the color encoding of ensemble scalar and orientation to visualize diffusion magnetic resonance imaging (DMRI) tubes. The experiment tested six scalar colormaps for average fractional anisotropy (FA) tasks (grayscale, blackbody, diverging, isoluminant-rainbow, extended-blackbody, and coolwarm) and four three-dimensional (3D) spherical colormaps for tract tracing tasks (uniform gray, absolute, eigenmaps, and Boy's surface embedding). We found that extended-blackbody, coolwarm, and blackbody remain the best three approaches for identifying ensemble average in 3D. Isoluminant-rainbow colormap led to the same ensemble mean accuracy as other colormaps. However, more than 50 percent of the answers consistently had higher estimates of the ensemble average, independent of the mean values. The number of hues, not luminance, influences ensemble estimates of mean values. For ensemble orientation-tracing tasks, we found that both Boy's surface embedding (greatest spatial resolution and contrast) and absolute colormaps (lowest spatial resolution and contrast) led to more accurate answers than the eigenmaps scheme (medium resolution and contrast), acting as the uncanny-valley phenomenon of visualization design in terms of accuracy. Absolute colormap broadly used in brain science is a good default spherical colormap. We could conclude from our study that human visual processing of a chunk of colors differs from that of single colors." @default.
- W2896415923 created "2018-10-26" @default.
- W2896415923 creator A5005627824 @default.
- W2896415923 creator A5017463743 @default.
- W2896415923 creator A5030179454 @default.
- W2896415923 creator A5065739761 @default.
- W2896415923 creator A5074892973 @default.
- W2896415923 date "2020-09-01" @default.
- W2896415923 modified "2023-10-17" @default.
- W2896415923 title "Measuring the Effects of Scalar and Spherical Colormaps on Ensembles of DMRI Tubes" @default.
- W2896415923 cites W110349276 @default.
- W2896415923 cites W1417422537 @default.
- W2896415923 cites W1493275625 @default.
- W2896415923 cites W1532257412 @default.
- W2896415923 cites W1606637515 @default.
- W2896415923 cites W177671575 @default.
- W2896415923 cites W1830709933 @default.
- W2896415923 cites W1896238907 @default.
- W2896415923 cites W1959365993 @default.
- W2896415923 cites W1964279605 @default.
- W2896415923 cites W1969153223 @default.
- W2896415923 cites W1969701464 @default.
- W2896415923 cites W1992743299 @default.
- W2896415923 cites W1993766194 @default.
- W2896415923 cites W2000512760 @default.
- W2896415923 cites W2001274155 @default.
- W2896415923 cites W2005125242 @default.
- W2896415923 cites W2009036027 @default.
- W2896415923 cites W2042307695 @default.
- W2896415923 cites W2056709066 @default.
- W2896415923 cites W2057385065 @default.
- W2896415923 cites W2067197576 @default.
- W2896415923 cites W2072965894 @default.
- W2896415923 cites W2084848678 @default.
- W2896415923 cites W2093890259 @default.
- W2896415923 cites W2095528897 @default.
- W2896415923 cites W2097308346 @default.
- W2896415923 cites W2098353881 @default.
- W2896415923 cites W2110220115 @default.
- W2896415923 cites W2110224141 @default.
- W2896415923 cites W2110890346 @default.
- W2896415923 cites W2127610265 @default.
- W2896415923 cites W2132933030 @default.
- W2896415923 cites W2135392761 @default.
- W2896415923 cites W2137524121 @default.
- W2896415923 cites W2141653286 @default.
- W2896415923 cites W2141692790 @default.
- W2896415923 cites W2142493242 @default.
- W2896415923 cites W2143349559 @default.
- W2896415923 cites W2144418872 @default.
- W2896415923 cites W2144937933 @default.
- W2896415923 cites W2147933509 @default.
- W2896415923 cites W2153581683 @default.
- W2896415923 cites W2156204145 @default.
- W2896415923 cites W2156295356 @default.
- W2896415923 cites W2162665012 @default.
- W2896415923 cites W2163902695 @default.
- W2896415923 cites W2166793263 @default.
- W2896415923 cites W2166801759 @default.
- W2896415923 cites W2171522901 @default.
- W2896415923 cites W2297694412 @default.
- W2896415923 cites W2300653232 @default.
- W2896415923 cites W2323200333 @default.
- W2896415923 cites W2466884089 @default.
- W2896415923 cites W2480200723 @default.
- W2896415923 cites W2504350669 @default.
- W2896415923 cites W2511469011 @default.
- W2896415923 cites W2549731245 @default.
- W2896415923 cites W2573800174 @default.
- W2896415923 cites W2726278595 @default.
- W2896415923 cites W2750869390 @default.
- W2896415923 cites W2751997495 @default.
- W2896415923 cites W2753766497 @default.
- W2896415923 cites W2915459242 @default.
- W2896415923 cites W300909183 @default.
- W2896415923 cites W3025248509 @default.
- W2896415923 cites W3141978729 @default.
- W2896415923 cites W3146072178 @default.
- W2896415923 cites W3149175271 @default.
- W2896415923 cites W4239721925 @default.
- W2896415923 cites W4242372420 @default.
- W2896415923 cites W4253738845 @default.
- W2896415923 cites W4256536686 @default.
- W2896415923 doi "https://doi.org/10.1109/tvcg.2019.2898438" @default.
- W2896415923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30763242" @default.
- W2896415923 hasPublicationYear "2020" @default.
- W2896415923 type Work @default.
- W2896415923 sameAs 2896415923 @default.
- W2896415923 citedByCount "4" @default.
- W2896415923 countsByYear W28964159232019 @default.
- W2896415923 countsByYear W28964159232022 @default.
- W2896415923 crossrefType "journal-article" @default.
- W2896415923 hasAuthorship W2896415923A5005627824 @default.
- W2896415923 hasAuthorship W2896415923A5017463743 @default.
- W2896415923 hasAuthorship W2896415923A5030179454 @default.
- W2896415923 hasAuthorship W2896415923A5065739761 @default.
- W2896415923 hasAuthorship W2896415923A5074892973 @default.
- W2896415923 hasBestOaLocation W28964159231 @default.