Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896427493> ?p ?o ?g. }
- W2896427493 endingPage "8468" @default.
- W2896427493 startingPage "8458" @default.
- W2896427493 abstract "Large ammonia clusters represent a model system of ices that are omnipresent throughout the space. The interaction of ammonia ices with other hydrogen-boding molecules such as methanol or water and their behavior upon an ionization are thus relevant in the astrochemical context. In this study, ammonia clusters (NH3) N with the mean size N̅ ≈ 230 were prepared in molecular beams and passed through a pickup cell in which methanol molecules were adsorbed. At the highest exploited pickup pressures, the average composition of (NH3) N(CH3OH) M clusters was estimated to be N: M ≈ 210:10. On the other hand, the electron ionization of these clusters yielded about 75% of methanol-containing fragments (NH3) n(CH3OH) mH+ compared to 25% contribution of pure ammonia (NH3) nH+ ions. On the basis of this substantial disproportion, we propose the following ionization mechanism: The prevailing ammonia is ionized in most cases, resulting in NH4+ core solvated most likely with four ammonia molecules, yielding the well-known magic number structure (NH3)4NH4+. The methanol molecules exhibit a strong propensity for sticking to the fragment ion. We have also considered mechanisms of intracluster reactions. In most cases, proton transfer between ammonia units take place. The theoretical calculations suggested the proton transfer either from the methyl group or from the hydroxyl group of the ionized methanol molecule to ammonia to be the energetically open channels. However, the experiments with selectively deuterated methanols did not show any evidence for the D+ transfer from the CD3 group. The proton transfer from the hydroxyl group could not be excluded entirely or confirmed unambiguously by the experiment." @default.
- W2896427493 created "2018-10-26" @default.
- W2896427493 creator A5004974913 @default.
- W2896427493 creator A5012648165 @default.
- W2896427493 creator A5021770645 @default.
- W2896427493 creator A5029602263 @default.
- W2896427493 creator A5039014447 @default.
- W2896427493 creator A5054915258 @default.
- W2896427493 creator A5083671197 @default.
- W2896427493 date "2018-10-09" @default.
- W2896427493 modified "2023-09-24" @default.
- W2896427493 title "Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules" @default.
- W2896427493 cites W1966099579 @default.
- W2896427493 cites W1971308593 @default.
- W2896427493 cites W1972332876 @default.
- W2896427493 cites W1975705421 @default.
- W2896427493 cites W1978138745 @default.
- W2896427493 cites W1981644447 @default.
- W2896427493 cites W1986774990 @default.
- W2896427493 cites W1992494520 @default.
- W2896427493 cites W1997401575 @default.
- W2896427493 cites W2000193505 @default.
- W2896427493 cites W2005302290 @default.
- W2896427493 cites W2007109039 @default.
- W2896427493 cites W2007561731 @default.
- W2896427493 cites W2008050176 @default.
- W2896427493 cites W2015490453 @default.
- W2896427493 cites W2017272419 @default.
- W2896427493 cites W2017545819 @default.
- W2896427493 cites W2021369383 @default.
- W2896427493 cites W2022276225 @default.
- W2896427493 cites W2023887658 @default.
- W2896427493 cites W2026132353 @default.
- W2896427493 cites W2026172453 @default.
- W2896427493 cites W2030675680 @default.
- W2896427493 cites W2034257884 @default.
- W2896427493 cites W2035954312 @default.
- W2896427493 cites W2036287297 @default.
- W2896427493 cites W2037365376 @default.
- W2896427493 cites W2037546322 @default.
- W2896427493 cites W2040053674 @default.
- W2896427493 cites W2043356503 @default.
- W2896427493 cites W2045323402 @default.
- W2896427493 cites W2046969441 @default.
- W2896427493 cites W2047893266 @default.
- W2896427493 cites W2050180361 @default.
- W2896427493 cites W2050895426 @default.
- W2896427493 cites W2051955190 @default.
- W2896427493 cites W2053627894 @default.
- W2896427493 cites W2057536126 @default.
- W2896427493 cites W2063079310 @default.
- W2896427493 cites W2063698214 @default.
- W2896427493 cites W2067379676 @default.
- W2896427493 cites W2069512547 @default.
- W2896427493 cites W2073392193 @default.
- W2896427493 cites W2073679530 @default.
- W2896427493 cites W2074766657 @default.
- W2896427493 cites W2077166231 @default.
- W2896427493 cites W2077548817 @default.
- W2896427493 cites W2084782907 @default.
- W2896427493 cites W2090338066 @default.
- W2896427493 cites W2095887694 @default.
- W2896427493 cites W2100803597 @default.
- W2896427493 cites W2100949693 @default.
- W2896427493 cites W2105365420 @default.
- W2896427493 cites W2112309441 @default.
- W2896427493 cites W2133839532 @default.
- W2896427493 cites W2144374898 @default.
- W2896427493 cites W2145240687 @default.
- W2896427493 cites W2151546244 @default.
- W2896427493 cites W2169425168 @default.
- W2896427493 cites W2269684056 @default.
- W2896427493 cites W2314157815 @default.
- W2896427493 cites W2317864635 @default.
- W2896427493 cites W2318116121 @default.
- W2896427493 cites W2324096604 @default.
- W2896427493 cites W2325991279 @default.
- W2896427493 cites W2330523619 @default.
- W2896427493 cites W2332564746 @default.
- W2896427493 cites W2435345258 @default.
- W2896427493 cites W2463936651 @default.
- W2896427493 cites W2509046831 @default.
- W2896427493 cites W2509987050 @default.
- W2896427493 cites W2551053325 @default.
- W2896427493 cites W2582605240 @default.
- W2896427493 cites W2604338676 @default.
- W2896427493 cites W2770710966 @default.
- W2896427493 cites W2788152586 @default.
- W2896427493 cites W2793489758 @default.
- W2896427493 cites W2799680040 @default.
- W2896427493 cites W3101230131 @default.
- W2896427493 cites W4235130704 @default.
- W2896427493 cites W4294344918 @default.
- W2896427493 doi "https://doi.org/10.1021/acs.jpca.8b07974" @default.
- W2896427493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30296830" @default.
- W2896427493 hasPublicationYear "2018" @default.
- W2896427493 type Work @default.
- W2896427493 sameAs 2896427493 @default.