Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896430583> ?p ?o ?g. }
- W2896430583 endingPage "514" @default.
- W2896430583 startingPage "506" @default.
- W2896430583 abstract "Available models for predicting lymph node invasion (LNI) in prostate cancer (PCa) patients undergoing radical prostatectomy (RP) might not be applicable to men diagnosed via magnetic resonance imaging (MRI)-targeted biopsies.To assess the accuracy of available tools to predict LNI and to develop a novel model for men diagnosed via MRI-targeted biopsies.A total of 497 patients diagnosed via MRI-targeted biopsies and treated with RP and extended pelvic lymph node dissection (ePLND) at five institutions were retrospectively identified.Three available models predicting LNI were evaluated using the area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analyses. A nomogram predicting LNI was developed and internally validated.Overall, 62 patients (12.5%) had LNI. The median number of nodes removed was 15. The AUC for the Briganti 2012, Briganti 2017, and MSKCC nomograms was 82%, 82%, and 81%, respectively, and their calibration characteristics were suboptimal. A model including PSA, clinical stage and maximum diameter of the index lesion on multiparametric MRI (mpMRI), grade group on targeted biopsy, and the presence of clinically significant PCa on concomitant systematic biopsy had an AUC of 86% and represented the basis for a coefficient-based nomogram. This tool exhibited a higher AUC and higher net benefit compared to available models developed using standard biopsies. Using a cutoff of 7%, 244 ePLNDs (57%) would be spared and a lower number of LNIs would be missed compared to available nomograms (1.6% vs 4.6% vs 4.5% vs 4.2% for the new nomogram vs Briganti 2012 vs Briganti 2017 vs MSKCC).Available models predicting LNI are characterized by suboptimal accuracy and clinical net benefit for patients diagnosed via MRI-targeted biopsies. A novel nomogram including mpMRI and MRI-targeted biopsy data should be used to identify candidates for ePLND in this setting.We developed the first nomogram to predict lymph node invasion (LNI) in prostate cancer patients diagnosed via magnetic resonance imaging-targeted biopsy undergoing radical prostatectomy. Adoption of this model to identify candidates for extended pelvic lymph node dissection could avoid up to 60% of these procedures at the cost of missing only 1.6% patients with LNI." @default.
- W2896430583 created "2018-10-26" @default.
- W2896430583 creator A5010275444 @default.
- W2896430583 creator A5011155325 @default.
- W2896430583 creator A5022352601 @default.
- W2896430583 creator A5023266580 @default.
- W2896430583 creator A5031548152 @default.
- W2896430583 creator A5031550729 @default.
- W2896430583 creator A5036150713 @default.
- W2896430583 creator A5036480438 @default.
- W2896430583 creator A5043758973 @default.
- W2896430583 creator A5048526726 @default.
- W2896430583 creator A5051194589 @default.
- W2896430583 creator A5061623935 @default.
- W2896430583 creator A5067303296 @default.
- W2896430583 creator A5070527293 @default.
- W2896430583 creator A5078216208 @default.
- W2896430583 creator A5083351538 @default.
- W2896430583 creator A5083745890 @default.
- W2896430583 creator A5088072625 @default.
- W2896430583 creator A5091030797 @default.
- W2896430583 date "2019-03-01" @default.
- W2896430583 modified "2023-10-16" @default.
- W2896430583 title "A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies" @default.
- W2896430583 cites W1469229356 @default.
- W2896430583 cites W1494521255 @default.
- W2896430583 cites W1545430154 @default.
- W2896430583 cites W2002640433 @default.
- W2896430583 cites W2045030989 @default.
- W2896430583 cites W2080725537 @default.
- W2896430583 cites W2091083791 @default.
- W2896430583 cites W2116692433 @default.
- W2896430583 cites W2124539070 @default.
- W2896430583 cites W2272450061 @default.
- W2896430583 cites W2291725697 @default.
- W2896430583 cites W2441140785 @default.
- W2896430583 cites W2511791204 @default.
- W2896430583 cites W2511949746 @default.
- W2896430583 cites W2577453388 @default.
- W2896430583 cites W2580862866 @default.
- W2896430583 cites W2606159587 @default.
- W2896430583 cites W2742423824 @default.
- W2896430583 cites W2765585252 @default.
- W2896430583 cites W2772536789 @default.
- W2896430583 cites W2776414480 @default.
- W2896430583 cites W2793905111 @default.
- W2896430583 cites W2806292892 @default.
- W2896430583 cites W2807764478 @default.
- W2896430583 cites W2811128593 @default.
- W2896430583 doi "https://doi.org/10.1016/j.eururo.2018.10.012" @default.
- W2896430583 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30342844" @default.
- W2896430583 hasPublicationYear "2019" @default.
- W2896430583 type Work @default.
- W2896430583 sameAs 2896430583 @default.
- W2896430583 citedByCount "173" @default.
- W2896430583 countsByYear W28964305832019 @default.
- W2896430583 countsByYear W28964305832020 @default.
- W2896430583 countsByYear W28964305832021 @default.
- W2896430583 countsByYear W28964305832022 @default.
- W2896430583 countsByYear W28964305832023 @default.
- W2896430583 crossrefType "journal-article" @default.
- W2896430583 hasAuthorship W2896430583A5010275444 @default.
- W2896430583 hasAuthorship W2896430583A5011155325 @default.
- W2896430583 hasAuthorship W2896430583A5022352601 @default.
- W2896430583 hasAuthorship W2896430583A5023266580 @default.
- W2896430583 hasAuthorship W2896430583A5031548152 @default.
- W2896430583 hasAuthorship W2896430583A5031550729 @default.
- W2896430583 hasAuthorship W2896430583A5036150713 @default.
- W2896430583 hasAuthorship W2896430583A5036480438 @default.
- W2896430583 hasAuthorship W2896430583A5043758973 @default.
- W2896430583 hasAuthorship W2896430583A5048526726 @default.
- W2896430583 hasAuthorship W2896430583A5051194589 @default.
- W2896430583 hasAuthorship W2896430583A5061623935 @default.
- W2896430583 hasAuthorship W2896430583A5067303296 @default.
- W2896430583 hasAuthorship W2896430583A5070527293 @default.
- W2896430583 hasAuthorship W2896430583A5078216208 @default.
- W2896430583 hasAuthorship W2896430583A5083351538 @default.
- W2896430583 hasAuthorship W2896430583A5083745890 @default.
- W2896430583 hasAuthorship W2896430583A5088072625 @default.
- W2896430583 hasAuthorship W2896430583A5091030797 @default.
- W2896430583 hasBestOaLocation W28964305832 @default.
- W2896430583 hasConcept C121608353 @default.
- W2896430583 hasConcept C126322002 @default.
- W2896430583 hasConcept C126838900 @default.
- W2896430583 hasConcept C126894567 @default.
- W2896430583 hasConcept C143409427 @default.
- W2896430583 hasConcept C143998085 @default.
- W2896430583 hasConcept C146357865 @default.
- W2896430583 hasConcept C151730666 @default.
- W2896430583 hasConcept C2775862295 @default.
- W2896430583 hasConcept C2775934546 @default.
- W2896430583 hasConcept C2779466945 @default.
- W2896430583 hasConcept C2780192828 @default.
- W2896430583 hasConcept C2780849966 @default.
- W2896430583 hasConcept C34626388 @default.
- W2896430583 hasConcept C58471807 @default.
- W2896430583 hasConcept C71924100 @default.
- W2896430583 hasConcept C86803240 @default.