Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896431063> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2896431063 abstract "With the in-depth research of data classification, multi-label classification has become a hot issue of research. Multi-label $boldsymbol{k}$ -nearest neighbor (ML- $boldsymbol{k}$ NN) is a classification method which predicts the unclassified instances' labels by learning the classified instances. However, this method doesn't consider the interrelationships between attributes and labels. Considering the relationships between properties and labels can improve accuracy of classification methods, but the diversities of properties and labels will present the curse of dimensionality. This problem make such methods can not be expanded under the background of big data. To solve this problem, this paper proposes three methods, called multi-label $boldsymbol{k}$ -nearest neighbor based on principal component analysis(PML- $boldsymbol{k}mathbf{NN}$ ), coupled similarity multi-label k-nearest neighbor based on principal component analysis(PCSML- $boldsymbol{k}mathbf{NN}$ ) and coupled similarity multi-label k-nearest neighbor classification based on feature selection (FCSML- $boldsymbol{k}mathbf{NN}$ ), which use feature extraction and feature selection to reduce the dimensions of labels' properties. We test the ML- $boldsymbol{k}mathbf{NN}$ and the three methods we proposed with two real data, the experimental results show that reduce the dimensions of labels' properties can improve the efficiency of classification methods." @default.
- W2896431063 created "2018-10-26" @default.
- W2896431063 creator A5000436275 @default.
- W2896431063 creator A5005026076 @default.
- W2896431063 creator A5017315985 @default.
- W2896431063 creator A5025752476 @default.
- W2896431063 date "2018-06-01" @default.
- W2896431063 modified "2023-09-24" @default.
- W2896431063 title "The Research of Multi-Label <tex>$k$</tex>-Nearest Neighbor Based on Descending Dimension" @default.
- W2896431063 cites W1558128972 @default.
- W2896431063 cites W1985032507 @default.
- W2896431063 cites W2013619732 @default.
- W2896431063 cites W2052684427 @default.
- W2896431063 cites W2053463056 @default.
- W2896431063 cites W2105896409 @default.
- W2896431063 cites W2107753812 @default.
- W2896431063 cites W2156935079 @default.
- W2896431063 doi "https://doi.org/10.1109/sera.2018.8477210" @default.
- W2896431063 hasPublicationYear "2018" @default.
- W2896431063 type Work @default.
- W2896431063 sameAs 2896431063 @default.
- W2896431063 citedByCount "0" @default.
- W2896431063 crossrefType "proceedings-article" @default.
- W2896431063 hasAuthorship W2896431063A5000436275 @default.
- W2896431063 hasAuthorship W2896431063A5005026076 @default.
- W2896431063 hasAuthorship W2896431063A5017315985 @default.
- W2896431063 hasAuthorship W2896431063A5025752476 @default.
- W2896431063 hasConcept C103278499 @default.
- W2896431063 hasConcept C111030470 @default.
- W2896431063 hasConcept C113238511 @default.
- W2896431063 hasConcept C114614502 @default.
- W2896431063 hasConcept C115961682 @default.
- W2896431063 hasConcept C116738811 @default.
- W2896431063 hasConcept C153180895 @default.
- W2896431063 hasConcept C154945302 @default.
- W2896431063 hasConcept C27438332 @default.
- W2896431063 hasConcept C33676613 @default.
- W2896431063 hasConcept C33923547 @default.
- W2896431063 hasConcept C41008148 @default.
- W2896431063 hasConcept C70518039 @default.
- W2896431063 hasConceptScore W2896431063C103278499 @default.
- W2896431063 hasConceptScore W2896431063C111030470 @default.
- W2896431063 hasConceptScore W2896431063C113238511 @default.
- W2896431063 hasConceptScore W2896431063C114614502 @default.
- W2896431063 hasConceptScore W2896431063C115961682 @default.
- W2896431063 hasConceptScore W2896431063C116738811 @default.
- W2896431063 hasConceptScore W2896431063C153180895 @default.
- W2896431063 hasConceptScore W2896431063C154945302 @default.
- W2896431063 hasConceptScore W2896431063C27438332 @default.
- W2896431063 hasConceptScore W2896431063C33676613 @default.
- W2896431063 hasConceptScore W2896431063C33923547 @default.
- W2896431063 hasConceptScore W2896431063C41008148 @default.
- W2896431063 hasConceptScore W2896431063C70518039 @default.
- W2896431063 hasLocation W28964310631 @default.
- W2896431063 hasOpenAccess W2896431063 @default.
- W2896431063 hasPrimaryLocation W28964310631 @default.
- W2896431063 hasRelatedWork W1490636636 @default.
- W2896431063 hasRelatedWork W1587400186 @default.
- W2896431063 hasRelatedWork W1874589333 @default.
- W2896431063 hasRelatedWork W2005651787 @default.
- W2896431063 hasRelatedWork W2006327656 @default.
- W2896431063 hasRelatedWork W2054205017 @default.
- W2896431063 hasRelatedWork W2078876073 @default.
- W2896431063 hasRelatedWork W2105405775 @default.
- W2896431063 hasRelatedWork W2168592605 @default.
- W2896431063 hasRelatedWork W2376222729 @default.
- W2896431063 hasRelatedWork W2381944848 @default.
- W2896431063 hasRelatedWork W2521279443 @default.
- W2896431063 hasRelatedWork W2552490453 @default.
- W2896431063 hasRelatedWork W2579139690 @default.
- W2896431063 hasRelatedWork W2580072555 @default.
- W2896431063 hasRelatedWork W2798798451 @default.
- W2896431063 hasRelatedWork W2895771060 @default.
- W2896431063 hasRelatedWork W2901609094 @default.
- W2896431063 hasRelatedWork W3033003015 @default.
- W2896431063 hasRelatedWork W851208606 @default.
- W2896431063 isParatext "false" @default.
- W2896431063 isRetracted "false" @default.
- W2896431063 magId "2896431063" @default.
- W2896431063 workType "article" @default.