Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896432723> ?p ?o ?g. }
- W2896432723 endingPage "606" @default.
- W2896432723 startingPage "594" @default.
- W2896432723 abstract "Crop rotations with maize and flooded rice lead to temporally aerobic soil conditions. This promotes the development of desiccation cracks in the soil, which can act as preferential flow pathways for water and solutes. We hypothesized that these cracks are enriched with organic carbon (C), plant nutrients and microbial residues (amino sugars) and that they can thus also serve as hot spots of fertilizer and C cycling. To test this hypothesis, we applied 13C-labelled rice straw and 15N-labelled urea to rice fields of the International Rice Research Institute (Los Baños, Philippines). We then traced the fate of the 13C-labelled rice straw and the 15N-labelled urea in crack and bulk soil and in microbial residues in two approaches, i) in the short term, i.e., 24 h after application of straw and fertilizer jointly with a dye tracer (Brilliant Blue) prior to maize seeding in the paddy - maize cropping system, as well as ii) in the long-term, i.e., during one year and for three different crop rotations (continuous paddy rice, paddy rice – maize, and paddy rice – maize with straw mulching and cover cropping). The short-term analyses of the dye tracer depth profiles showed that flow path areas decreased with increasing depth. A typical impermeable plough pan was not identified. Instead, we observed rapid infiltration of irrigation water down to 60 cm soil depth. The dyed flow paths were enriched in organic C (+12%) and plant nutrients (N: +21%, Ca2+: +59%, K+: +39%, Mg2+: +39%) relative to the bulk soil. The labelled straw and fertilizer quickly reached 60 cm depth with the dye tracer. We could not identify elevated microbial biomass along the flow paths, however, we did find larger microbial activities along the cracks in the long-term experiment than in the surrounding bulk soil. The increased activity fostered microbial uptake of fertilizer 15N along the cracks, which was detected mainly for fungal residues and only in the trials receiving straw (crack soil: 0.6 ± 0.1 mg glucosamine-15N kg soil−1, bulk soil: 0.2 ± 0.1 mg glucosamine-15N kg soil−1). We conclude that analysis of homogenized bulk soil samples can underestimate C and nutrient availability, as well as their microbial processing in paddy rice soils, when crack systems are not considered." @default.
- W2896432723 created "2018-10-26" @default.
- W2896432723 creator A5013746530 @default.
- W2896432723 creator A5022727951 @default.
- W2896432723 creator A5050101626 @default.
- W2896432723 creator A5052005562 @default.
- W2896432723 creator A5052109192 @default.
- W2896432723 creator A5052465625 @default.
- W2896432723 creator A5060080153 @default.
- W2896432723 creator A5060674901 @default.
- W2896432723 creator A5082097657 @default.
- W2896432723 date "2019-03-01" @default.
- W2896432723 modified "2023-10-15" @default.
- W2896432723 title "Preferential flow pathways in paddy rice soils as hot spots for nutrient cycling" @default.
- W2896432723 cites W100386576 @default.
- W2896432723 cites W107582767 @default.
- W2896432723 cites W1246000541 @default.
- W2896432723 cites W147809968 @default.
- W2896432723 cites W1581648025 @default.
- W2896432723 cites W1583314935 @default.
- W2896432723 cites W1764149807 @default.
- W2896432723 cites W1966893966 @default.
- W2896432723 cites W1978452695 @default.
- W2896432723 cites W1980440523 @default.
- W2896432723 cites W1980453934 @default.
- W2896432723 cites W1986751627 @default.
- W2896432723 cites W1989687437 @default.
- W2896432723 cites W1992009524 @default.
- W2896432723 cites W2006810925 @default.
- W2896432723 cites W2009458768 @default.
- W2896432723 cites W2012070491 @default.
- W2896432723 cites W2013506219 @default.
- W2896432723 cites W2014155683 @default.
- W2896432723 cites W2017080781 @default.
- W2896432723 cites W2018564133 @default.
- W2896432723 cites W2019001487 @default.
- W2896432723 cites W2020748850 @default.
- W2896432723 cites W2020883978 @default.
- W2896432723 cites W2021348020 @default.
- W2896432723 cites W2023450438 @default.
- W2896432723 cites W2026470650 @default.
- W2896432723 cites W2030707438 @default.
- W2896432723 cites W2030993113 @default.
- W2896432723 cites W2037524045 @default.
- W2896432723 cites W2037899484 @default.
- W2896432723 cites W2039281841 @default.
- W2896432723 cites W2039476339 @default.
- W2896432723 cites W2043571751 @default.
- W2896432723 cites W2044494259 @default.
- W2896432723 cites W2045359511 @default.
- W2896432723 cites W2046843743 @default.
- W2896432723 cites W2053217611 @default.
- W2896432723 cites W2058641857 @default.
- W2896432723 cites W2060555994 @default.
- W2896432723 cites W2061521291 @default.
- W2896432723 cites W2063997358 @default.
- W2896432723 cites W2066962786 @default.
- W2896432723 cites W2069542789 @default.
- W2896432723 cites W2072556768 @default.
- W2896432723 cites W2075356182 @default.
- W2896432723 cites W2075386919 @default.
- W2896432723 cites W2075478589 @default.
- W2896432723 cites W2083334852 @default.
- W2896432723 cites W2083469864 @default.
- W2896432723 cites W2085117485 @default.
- W2896432723 cites W2091454231 @default.
- W2896432723 cites W2099973810 @default.
- W2896432723 cites W2103774158 @default.
- W2896432723 cites W2108620797 @default.
- W2896432723 cites W2119687309 @default.
- W2896432723 cites W2120996289 @default.
- W2896432723 cites W2123381127 @default.
- W2896432723 cites W2130236663 @default.
- W2896432723 cites W2157064775 @default.
- W2896432723 cites W2752137634 @default.
- W2896432723 cites W2768123953 @default.
- W2896432723 cites W2789648427 @default.
- W2896432723 cites W2800342701 @default.
- W2896432723 cites W3023867049 @default.
- W2896432723 cites W323227197 @default.
- W2896432723 doi "https://doi.org/10.1016/j.geoderma.2018.10.011" @default.
- W2896432723 hasPublicationYear "2019" @default.
- W2896432723 type Work @default.
- W2896432723 sameAs 2896432723 @default.
- W2896432723 citedByCount "23" @default.
- W2896432723 countsByYear W28964327232019 @default.
- W2896432723 countsByYear W28964327232020 @default.
- W2896432723 countsByYear W28964327232021 @default.
- W2896432723 countsByYear W28964327232022 @default.
- W2896432723 countsByYear W28964327232023 @default.
- W2896432723 crossrefType "journal-article" @default.
- W2896432723 hasAuthorship W2896432723A5013746530 @default.
- W2896432723 hasAuthorship W2896432723A5022727951 @default.
- W2896432723 hasAuthorship W2896432723A5050101626 @default.
- W2896432723 hasAuthorship W2896432723A5052005562 @default.
- W2896432723 hasAuthorship W2896432723A5052109192 @default.
- W2896432723 hasAuthorship W2896432723A5052465625 @default.
- W2896432723 hasAuthorship W2896432723A5060080153 @default.