Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896434829> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2896434829 abstract "Abstract Digital rocks obtained from high-resolution micro-computed tomography (micro-CT) imaging has quickly emerged as a powerful tool for studying pore-scale transport phenomena in petroleum engineering. In such frameworks, digital rock analysis usually carries the problematic aspect of segmenting greyscale images into different phases for quantifying many physical properties. Fine pore structures, such as small rock fissures, are usually lost during segmentation. In addition, user bias in this process can lead to significantly different results. An alternative approach based on deep learning is proposed. Convolutional Neural Networks (CNN) are utilized to rapidly predict several porous media properties from 2D greyscale micro-computed tomography images in a supervised learning frame. A dataset of greyscale micro-CT images of three different sandstones species is prepared for this study. The image dataset is segmented, and pore networks are extracted to compute porosity, coordination number, and average pore size for training and validating our model predictions. The greyscale images (input) and the computed properties (output) are uploaded to a deep neural network for training and validation in an end-to-end regression scheme. Overall, our model estimates porosity, coordination number, and average pore size with an average error of 0.05, 0.17, and 1.8μm, respectively. Training wall-time and prediction error analysis are also discussed. This is a first step to use artificial intelligence and machine learning methods for the robust prediction of porous media properties from unprocessed image-driven data." @default.
- W2896434829 created "2018-10-26" @default.
- W2896434829 creator A5012826639 @default.
- W2896434829 creator A5047056339 @default.
- W2896434829 creator A5050047327 @default.
- W2896434829 date "2018-10-23" @default.
- W2896434829 modified "2023-09-25" @default.
- W2896434829 title "Deep Learning Convolutional Neural Networks to Predict Porous Media Properties" @default.
- W2896434829 cites W1988903143 @default.
- W2896434829 cites W1997578397 @default.
- W2896434829 cites W2004369904 @default.
- W2896434829 cites W2014988088 @default.
- W2896434829 cites W2026632831 @default.
- W2896434829 cites W2041258553 @default.
- W2896434829 cites W2041498130 @default.
- W2896434829 cites W2046033161 @default.
- W2896434829 cites W2050551672 @default.
- W2896434829 cites W2099540110 @default.
- W2896434829 cites W2116191774 @default.
- W2896434829 cites W2126239168 @default.
- W2896434829 cites W2133059825 @default.
- W2896434829 cites W2133293006 @default.
- W2896434829 cites W2141173661 @default.
- W2896434829 cites W2517872815 @default.
- W2896434829 cites W2735661315 @default.
- W2896434829 cites W2799471422 @default.
- W2896434829 cites W4250362969 @default.
- W2896434829 doi "https://doi.org/10.2118/191906-ms" @default.
- W2896434829 hasPublicationYear "2018" @default.
- W2896434829 type Work @default.
- W2896434829 sameAs 2896434829 @default.
- W2896434829 citedByCount "32" @default.
- W2896434829 countsByYear W28964348292019 @default.
- W2896434829 countsByYear W28964348292020 @default.
- W2896434829 countsByYear W28964348292021 @default.
- W2896434829 countsByYear W28964348292022 @default.
- W2896434829 countsByYear W28964348292023 @default.
- W2896434829 crossrefType "proceedings-article" @default.
- W2896434829 hasAuthorship W2896434829A5012826639 @default.
- W2896434829 hasAuthorship W2896434829A5047056339 @default.
- W2896434829 hasAuthorship W2896434829A5050047327 @default.
- W2896434829 hasConcept C108583219 @default.
- W2896434829 hasConcept C115961682 @default.
- W2896434829 hasConcept C119857082 @default.
- W2896434829 hasConcept C153180895 @default.
- W2896434829 hasConcept C154945302 @default.
- W2896434829 hasConcept C41008148 @default.
- W2896434829 hasConcept C50644808 @default.
- W2896434829 hasConcept C78201319 @default.
- W2896434829 hasConcept C81363708 @default.
- W2896434829 hasConceptScore W2896434829C108583219 @default.
- W2896434829 hasConceptScore W2896434829C115961682 @default.
- W2896434829 hasConceptScore W2896434829C119857082 @default.
- W2896434829 hasConceptScore W2896434829C153180895 @default.
- W2896434829 hasConceptScore W2896434829C154945302 @default.
- W2896434829 hasConceptScore W2896434829C41008148 @default.
- W2896434829 hasConceptScore W2896434829C50644808 @default.
- W2896434829 hasConceptScore W2896434829C78201319 @default.
- W2896434829 hasConceptScore W2896434829C81363708 @default.
- W2896434829 hasLocation W28964348291 @default.
- W2896434829 hasOpenAccess W2896434829 @default.
- W2896434829 hasPrimaryLocation W28964348291 @default.
- W2896434829 hasRelatedWork W2060518359 @default.
- W2896434829 hasRelatedWork W2731899572 @default.
- W2896434829 hasRelatedWork W2947899480 @default.
- W2896434829 hasRelatedWork W2999805992 @default.
- W2896434829 hasRelatedWork W3116150086 @default.
- W2896434829 hasRelatedWork W3133861977 @default.
- W2896434829 hasRelatedWork W4200173597 @default.
- W2896434829 hasRelatedWork W4312417841 @default.
- W2896434829 hasRelatedWork W4321369474 @default.
- W2896434829 hasRelatedWork W4380075502 @default.
- W2896434829 isParatext "false" @default.
- W2896434829 isRetracted "false" @default.
- W2896434829 magId "2896434829" @default.
- W2896434829 workType "article" @default.