Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896439628> ?p ?o ?g. }
- W2896439628 abstract "Network embedding plays a key role in network analysis, due to its ability to represent features of network struc- ture in a low-dimensional Euclidean space, making it possible to directly utilize the of f-the-shelf mining techniques in a variety of analysis tasks. Although fruitful research papers on network embedding have sprung up in recent years, most of them neglect an important fact that nodes and edges in real-world networks are of diverse interests especially when the network contains little side information such as labels. To tackle this challenge, we propose a novel iWalk model to learn interest-aware network embedding in an unsupervised fashion. iWalk can automatically assign interest to nodes and edges based on network topology and construct custom paths navigated by assigned interest, then Skip-gram is used to learn network embedding from these paths. Sufficient experiments are conducted on different tasks and three typical datasets, the empirical results demonstrate that our model outperform the stat-of-art methods in most instances." @default.
- W2896439628 created "2018-10-26" @default.
- W2896439628 creator A5010058972 @default.
- W2896439628 creator A5015879338 @default.
- W2896439628 creator A5035632020 @default.
- W2896439628 creator A5041489809 @default.
- W2896439628 creator A5085319576 @default.
- W2896439628 date "2018-07-01" @default.
- W2896439628 modified "2023-09-26" @default.
- W2896439628 title "iWalk: Interest-Aware Random Walk for Network Embedding" @default.
- W2896439628 cites W1965104506 @default.
- W2896439628 cites W1984270378 @default.
- W2896439628 cites W2001141328 @default.
- W2896439628 cites W2016440973 @default.
- W2896439628 cites W2053186076 @default.
- W2896439628 cites W2053478195 @default.
- W2896439628 cites W2077194953 @default.
- W2896439628 cites W2086254934 @default.
- W2896439628 cites W2090891622 @default.
- W2896439628 cites W2097308346 @default.
- W2896439628 cites W2107793528 @default.
- W2896439628 cites W2146241755 @default.
- W2896439628 cites W2151936673 @default.
- W2896439628 cites W2153959628 @default.
- W2896439628 cites W2161984370 @default.
- W2896439628 cites W2162630660 @default.
- W2896439628 cites W2258064579 @default.
- W2896439628 cites W2339131634 @default.
- W2896439628 cites W2387462954 @default.
- W2896439628 cites W2393319904 @default.
- W2896439628 cites W2479500547 @default.
- W2896439628 cites W2497326876 @default.
- W2896439628 cites W2526426687 @default.
- W2896439628 cites W2736065754 @default.
- W2896439628 cites W2740934577 @default.
- W2896439628 cites W2765833715 @default.
- W2896439628 cites W2767404761 @default.
- W2896439628 cites W2767849480 @default.
- W2896439628 cites W2962756421 @default.
- W2896439628 cites W3104097132 @default.
- W2896439628 cites W3105705953 @default.
- W2896439628 cites W334806227 @default.
- W2896439628 cites W4232932184 @default.
- W2896439628 cites W785819662 @default.
- W2896439628 doi "https://doi.org/10.1109/ijcnn.2018.8489566" @default.
- W2896439628 hasPublicationYear "2018" @default.
- W2896439628 type Work @default.
- W2896439628 sameAs 2896439628 @default.
- W2896439628 citedByCount "2" @default.
- W2896439628 countsByYear W28964396282021 @default.
- W2896439628 countsByYear W28964396282022 @default.
- W2896439628 crossrefType "proceedings-article" @default.
- W2896439628 hasAuthorship W2896439628A5010058972 @default.
- W2896439628 hasAuthorship W2896439628A5015879338 @default.
- W2896439628 hasAuthorship W2896439628A5035632020 @default.
- W2896439628 hasAuthorship W2896439628A5041489809 @default.
- W2896439628 hasAuthorship W2896439628A5085319576 @default.
- W2896439628 hasConcept C114614502 @default.
- W2896439628 hasConcept C119857082 @default.
- W2896439628 hasConcept C121332964 @default.
- W2896439628 hasConcept C124101348 @default.
- W2896439628 hasConcept C136197465 @default.
- W2896439628 hasConcept C136764020 @default.
- W2896439628 hasConcept C142323842 @default.
- W2896439628 hasConcept C154945302 @default.
- W2896439628 hasConcept C184720557 @default.
- W2896439628 hasConcept C199845137 @default.
- W2896439628 hasConcept C26517878 @default.
- W2896439628 hasConcept C2780801425 @default.
- W2896439628 hasConcept C31258907 @default.
- W2896439628 hasConcept C32946077 @default.
- W2896439628 hasConcept C33923547 @default.
- W2896439628 hasConcept C34947359 @default.
- W2896439628 hasConcept C38652104 @default.
- W2896439628 hasConcept C41008148 @default.
- W2896439628 hasConcept C41608201 @default.
- W2896439628 hasConcept C62520636 @default.
- W2896439628 hasConcept C80444323 @default.
- W2896439628 hasConceptScore W2896439628C114614502 @default.
- W2896439628 hasConceptScore W2896439628C119857082 @default.
- W2896439628 hasConceptScore W2896439628C121332964 @default.
- W2896439628 hasConceptScore W2896439628C124101348 @default.
- W2896439628 hasConceptScore W2896439628C136197465 @default.
- W2896439628 hasConceptScore W2896439628C136764020 @default.
- W2896439628 hasConceptScore W2896439628C142323842 @default.
- W2896439628 hasConceptScore W2896439628C154945302 @default.
- W2896439628 hasConceptScore W2896439628C184720557 @default.
- W2896439628 hasConceptScore W2896439628C199845137 @default.
- W2896439628 hasConceptScore W2896439628C26517878 @default.
- W2896439628 hasConceptScore W2896439628C2780801425 @default.
- W2896439628 hasConceptScore W2896439628C31258907 @default.
- W2896439628 hasConceptScore W2896439628C32946077 @default.
- W2896439628 hasConceptScore W2896439628C33923547 @default.
- W2896439628 hasConceptScore W2896439628C34947359 @default.
- W2896439628 hasConceptScore W2896439628C38652104 @default.
- W2896439628 hasConceptScore W2896439628C41008148 @default.
- W2896439628 hasConceptScore W2896439628C41608201 @default.
- W2896439628 hasConceptScore W2896439628C62520636 @default.
- W2896439628 hasConceptScore W2896439628C80444323 @default.
- W2896439628 hasLocation W28964396281 @default.