Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896442079> ?p ?o ?g. }
- W2896442079 endingPage "2828" @default.
- W2896442079 startingPage "2817" @default.
- W2896442079 abstract "In this paper, we present an approach for seeking exact solutions with coefficient function forms of conformable fractional partial differential equations. By a combination of an under-determined fractional transformation and the Jacobi elliptic equation, exact solutions with coefficient function forms can be obtained for fractional partial differential equations. The innovation point of the present approach lies in two aspects. One is the fractional transformation, which involve the traveling wave transformations used by many articles as special cases. The other is that more general exact solutions with coefficient function forms can be found, and traveling wave solutions with constants coefficients are only special cases of our results. As of applications, we apply this method to the space-time fractional (2+1)-dimensional dispersive long wave equations and the time fractional Bogoyavlenskii equations. As a result, some exact solutions with coefficient function forms for the two equations are successfully found." @default.
- W2896442079 created "2018-10-26" @default.
- W2896442079 creator A5043652906 @default.
- W2896442079 date "2018-12-01" @default.
- W2896442079 modified "2023-10-01" @default.
- W2896442079 title "A new approach for seeking coefficient function solutions of conformable fractional partial differential equations based on the Jacobi elliptic equation" @default.
- W2896442079 cites W2002978202 @default.
- W2896442079 cites W2021301046 @default.
- W2896442079 cites W2022460062 @default.
- W2896442079 cites W2049687969 @default.
- W2896442079 cites W2063067239 @default.
- W2896442079 cites W2066396442 @default.
- W2896442079 cites W2079845241 @default.
- W2896442079 cites W2082394001 @default.
- W2896442079 cites W2336493376 @default.
- W2896442079 cites W2346242075 @default.
- W2896442079 cites W2366287299 @default.
- W2896442079 cites W2418773378 @default.
- W2896442079 cites W2466188600 @default.
- W2896442079 cites W2474252895 @default.
- W2896442079 cites W2513362670 @default.
- W2896442079 cites W2547305003 @default.
- W2896442079 cites W2561735245 @default.
- W2896442079 cites W2565956535 @default.
- W2896442079 cites W2567602942 @default.
- W2896442079 cites W2572896138 @default.
- W2896442079 cites W2575265544 @default.
- W2896442079 cites W2581978511 @default.
- W2896442079 cites W2583712254 @default.
- W2896442079 cites W2593747028 @default.
- W2896442079 cites W2604171474 @default.
- W2896442079 cites W2605009403 @default.
- W2896442079 cites W2613317786 @default.
- W2896442079 cites W2614989894 @default.
- W2896442079 cites W2616603513 @default.
- W2896442079 cites W2617369818 @default.
- W2896442079 cites W2621260716 @default.
- W2896442079 cites W2725597515 @default.
- W2896442079 cites W2734364682 @default.
- W2896442079 cites W2741258282 @default.
- W2896442079 cites W2766276856 @default.
- W2896442079 cites W2769188192 @default.
- W2896442079 cites W2770288635 @default.
- W2896442079 cites W2772331899 @default.
- W2896442079 cites W2773084900 @default.
- W2896442079 cites W2782272299 @default.
- W2896442079 cites W2784139802 @default.
- W2896442079 cites W2791839457 @default.
- W2896442079 cites W2795023809 @default.
- W2896442079 cites W2800467841 @default.
- W2896442079 cites W306873846 @default.
- W2896442079 doi "https://doi.org/10.1016/j.cjph.2018.08.006" @default.
- W2896442079 hasPublicationYear "2018" @default.
- W2896442079 type Work @default.
- W2896442079 sameAs 2896442079 @default.
- W2896442079 citedByCount "28" @default.
- W2896442079 countsByYear W28964420792019 @default.
- W2896442079 countsByYear W28964420792020 @default.
- W2896442079 countsByYear W28964420792021 @default.
- W2896442079 countsByYear W28964420792022 @default.
- W2896442079 countsByYear W28964420792023 @default.
- W2896442079 crossrefType "journal-article" @default.
- W2896442079 hasAuthorship W2896442079A5043652906 @default.
- W2896442079 hasConcept C104317684 @default.
- W2896442079 hasConcept C110342517 @default.
- W2896442079 hasConcept C121332964 @default.
- W2896442079 hasConcept C123958593 @default.
- W2896442079 hasConcept C134306372 @default.
- W2896442079 hasConcept C14036430 @default.
- W2896442079 hasConcept C154249771 @default.
- W2896442079 hasConcept C185592680 @default.
- W2896442079 hasConcept C204241405 @default.
- W2896442079 hasConcept C33923547 @default.
- W2896442079 hasConcept C520416788 @default.
- W2896442079 hasConcept C55493867 @default.
- W2896442079 hasConcept C62520636 @default.
- W2896442079 hasConcept C64057670 @default.
- W2896442079 hasConcept C78045399 @default.
- W2896442079 hasConcept C78458016 @default.
- W2896442079 hasConcept C86072612 @default.
- W2896442079 hasConcept C86803240 @default.
- W2896442079 hasConcept C93779851 @default.
- W2896442079 hasConceptScore W2896442079C104317684 @default.
- W2896442079 hasConceptScore W2896442079C110342517 @default.
- W2896442079 hasConceptScore W2896442079C121332964 @default.
- W2896442079 hasConceptScore W2896442079C123958593 @default.
- W2896442079 hasConceptScore W2896442079C134306372 @default.
- W2896442079 hasConceptScore W2896442079C14036430 @default.
- W2896442079 hasConceptScore W2896442079C154249771 @default.
- W2896442079 hasConceptScore W2896442079C185592680 @default.
- W2896442079 hasConceptScore W2896442079C204241405 @default.
- W2896442079 hasConceptScore W2896442079C33923547 @default.
- W2896442079 hasConceptScore W2896442079C520416788 @default.
- W2896442079 hasConceptScore W2896442079C55493867 @default.
- W2896442079 hasConceptScore W2896442079C62520636 @default.
- W2896442079 hasConceptScore W2896442079C64057670 @default.
- W2896442079 hasConceptScore W2896442079C78045399 @default.
- W2896442079 hasConceptScore W2896442079C78458016 @default.