Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896443452> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2896443452 endingPage "439" @default.
- W2896443452 startingPage "425" @default.
- W2896443452 abstract "Abstract In recent years, several studies have harnessed Twitter data for detecting traffic incidents and monitoring traffic conditions. Researchers have utilized the bag-of-words representation for converting tweets into numerical feature vectors. However, the bag-of-words not only ignores the order of tweet's words but suffers from the curse of dimensionality and sparsity. A common approach in literature for dimensionality reduction is to build the bag-of-words on the top of pre-defined traffic keywords. The immediate criticisms to such a strategy are that the pre-defined set of keywords may not include all traffic keywords and the tweet language is subjected to change over time. To address these shortcomings, we utilize the power of deep-learning architectures for both representing tweets in numerical vectors and classifying them into three categories: 1) non-traffic, 2) traffic incident, and 3) traffic information and condition. First, we map tweets into low-dimensional vector space through word-embedding tools, which are also capable of measuring the semantic relationship between words. Supervised deep-learning algorithms including convolutional neural network (CNN) and recurrent neural network (RNN) are then deployed on the top of word-embedding models for detecting traffic events. For training and testing our proposed model, a large volume of traffic tweets is collected through Twitter API endpoints and labeled through an efficient strategy. Experimental results on our labeled dataset show that the proposed approach achieves clear improvements over state-of-the-art methods." @default.
- W2896443452 created "2018-10-26" @default.
- W2896443452 creator A5003822253 @default.
- W2896443452 creator A5087560381 @default.
- W2896443452 date "2019-03-01" @default.
- W2896443452 modified "2023-10-06" @default.
- W2896443452 title "Developing a Twitter-based traffic event detection model using deep learning architectures" @default.
- W2896443452 cites W1823156104 @default.
- W2896443452 cites W1890727290 @default.
- W2896443452 cites W1989597542 @default.
- W2896443452 cites W2064675550 @default.
- W2896443452 cites W2105720869 @default.
- W2896443452 cites W2147194983 @default.
- W2896443452 cites W2273718352 @default.
- W2896443452 cites W2299239789 @default.
- W2896443452 cites W2771098373 @default.
- W2896443452 cites W4210984920 @default.
- W2896443452 doi "https://doi.org/10.1016/j.eswa.2018.10.017" @default.
- W2896443452 hasPublicationYear "2019" @default.
- W2896443452 type Work @default.
- W2896443452 sameAs 2896443452 @default.
- W2896443452 citedByCount "70" @default.
- W2896443452 countsByYear W28964434522019 @default.
- W2896443452 countsByYear W28964434522020 @default.
- W2896443452 countsByYear W28964434522021 @default.
- W2896443452 countsByYear W28964434522022 @default.
- W2896443452 countsByYear W28964434522023 @default.
- W2896443452 crossrefType "journal-article" @default.
- W2896443452 hasAuthorship W2896443452A5003822253 @default.
- W2896443452 hasAuthorship W2896443452A5087560381 @default.
- W2896443452 hasConcept C108583219 @default.
- W2896443452 hasConcept C119857082 @default.
- W2896443452 hasConcept C121332964 @default.
- W2896443452 hasConcept C154945302 @default.
- W2896443452 hasConcept C2779662365 @default.
- W2896443452 hasConcept C41008148 @default.
- W2896443452 hasConcept C62520636 @default.
- W2896443452 hasConcept C79403827 @default.
- W2896443452 hasConceptScore W2896443452C108583219 @default.
- W2896443452 hasConceptScore W2896443452C119857082 @default.
- W2896443452 hasConceptScore W2896443452C121332964 @default.
- W2896443452 hasConceptScore W2896443452C154945302 @default.
- W2896443452 hasConceptScore W2896443452C2779662365 @default.
- W2896443452 hasConceptScore W2896443452C41008148 @default.
- W2896443452 hasConceptScore W2896443452C62520636 @default.
- W2896443452 hasConceptScore W2896443452C79403827 @default.
- W2896443452 hasLocation W28964434521 @default.
- W2896443452 hasOpenAccess W2896443452 @default.
- W2896443452 hasPrimaryLocation W28964434521 @default.
- W2896443452 hasRelatedWork W2922457425 @default.
- W2896443452 hasRelatedWork W3014300295 @default.
- W2896443452 hasRelatedWork W3124051732 @default.
- W2896443452 hasRelatedWork W3164822677 @default.
- W2896443452 hasRelatedWork W3215138031 @default.
- W2896443452 hasRelatedWork W4223943233 @default.
- W2896443452 hasRelatedWork W4225161397 @default.
- W2896443452 hasRelatedWork W4250304930 @default.
- W2896443452 hasRelatedWork W4299487748 @default.
- W2896443452 hasRelatedWork W4309045103 @default.
- W2896443452 hasVolume "118" @default.
- W2896443452 isParatext "false" @default.
- W2896443452 isRetracted "false" @default.
- W2896443452 magId "2896443452" @default.
- W2896443452 workType "article" @default.