Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896445596> ?p ?o ?g. }
- W2896445596 endingPage "e2274" @default.
- W2896445596 startingPage "e2274" @default.
- W2896445596 abstract "Sparse recovery theory has been applied to damage detection by utilizing the sparsity feature of structural damage. The theory requires that the columns of the sensing matrix suffice certain independence criteria. In l1-regularized damage detection, the sensitivity matrix serves as the sensing matrix and is directly related to sensor locations. An optimal sensor placement technique is proposed such that the resulting sensitivity matrix is of the maximum independence in the columns or is of the least mutual coherence. Given a total number of sensors, the selection of sensor locations is a combinatorial problem. A genetic algorithm is thus used to solve this optimization problem, in which the mutual coherence of the sensitivity matrix is minimized. The obtained optimal sensor locations and associated sensitivity matrix are used in l1-regularized damage detection. An experimental cantilever beam and a three-storey frame are utilized to verify the effectiveness and reliability of the proposed sensor placement technique. Results show that using the modal data based on the optimal sensor placement can identify damage location and severity more accurately than using the ones based on uniformly selected sensor locations." @default.
- W2896445596 created "2018-10-26" @default.
- W2896445596 creator A5034520275 @default.
- W2896445596 creator A5058788289 @default.
- W2896445596 creator A5067248205 @default.
- W2896445596 creator A5073180390 @default.
- W2896445596 date "2018-10-08" @default.
- W2896445596 modified "2023-10-18" @default.
- W2896445596 title "Genetic algorithm based optimal sensor placement for<i>L</i><sub>1</sub>-regularized damage detection" @default.
- W2896445596 cites W1484715564 @default.
- W2896445596 cites W1567882266 @default.
- W2896445596 cites W1570089119 @default.
- W2896445596 cites W1892268707 @default.
- W2896445596 cites W1967315115 @default.
- W2896445596 cites W1974937407 @default.
- W2896445596 cites W1990773052 @default.
- W2896445596 cites W2007745280 @default.
- W2896445596 cites W2016467472 @default.
- W2896445596 cites W2021274998 @default.
- W2896445596 cites W2027976741 @default.
- W2896445596 cites W2038715032 @default.
- W2896445596 cites W2046787526 @default.
- W2896445596 cites W2050079552 @default.
- W2896445596 cites W2057037490 @default.
- W2896445596 cites W2061599165 @default.
- W2896445596 cites W2062332209 @default.
- W2896445596 cites W2065455374 @default.
- W2896445596 cites W2076684473 @default.
- W2896445596 cites W2092141692 @default.
- W2896445596 cites W2092544540 @default.
- W2896445596 cites W2100722180 @default.
- W2896445596 cites W2103268613 @default.
- W2896445596 cites W2112960100 @default.
- W2896445596 cites W2117753572 @default.
- W2896445596 cites W2122315118 @default.
- W2896445596 cites W2126431552 @default.
- W2896445596 cites W2129131372 @default.
- W2896445596 cites W2134033146 @default.
- W2896445596 cites W2138395440 @default.
- W2896445596 cites W2145096794 @default.
- W2896445596 cites W2151693816 @default.
- W2896445596 cites W2154332973 @default.
- W2896445596 cites W2171784600 @default.
- W2896445596 cites W2489566846 @default.
- W2896445596 cites W2507327712 @default.
- W2896445596 cites W2757052101 @default.
- W2896445596 cites W2791125991 @default.
- W2896445596 cites W4250589301 @default.
- W2896445596 doi "https://doi.org/10.1002/stc.2274" @default.
- W2896445596 hasPublicationYear "2018" @default.
- W2896445596 type Work @default.
- W2896445596 sameAs 2896445596 @default.
- W2896445596 citedByCount "37" @default.
- W2896445596 countsByYear W28964455962018 @default.
- W2896445596 countsByYear W28964455962019 @default.
- W2896445596 countsByYear W28964455962020 @default.
- W2896445596 countsByYear W28964455962021 @default.
- W2896445596 countsByYear W28964455962022 @default.
- W2896445596 countsByYear W28964455962023 @default.
- W2896445596 crossrefType "journal-article" @default.
- W2896445596 hasAuthorship W2896445596A5034520275 @default.
- W2896445596 hasAuthorship W2896445596A5058788289 @default.
- W2896445596 hasAuthorship W2896445596A5067248205 @default.
- W2896445596 hasAuthorship W2896445596A5073180390 @default.
- W2896445596 hasBestOaLocation W28964455961 @default.
- W2896445596 hasConcept C105795698 @default.
- W2896445596 hasConcept C106487976 @default.
- W2896445596 hasConcept C111335779 @default.
- W2896445596 hasConcept C11413529 @default.
- W2896445596 hasConcept C126255220 @default.
- W2896445596 hasConcept C127413603 @default.
- W2896445596 hasConcept C141354745 @default.
- W2896445596 hasConcept C159985019 @default.
- W2896445596 hasConcept C192562407 @default.
- W2896445596 hasConcept C21200559 @default.
- W2896445596 hasConcept C24326235 @default.
- W2896445596 hasConcept C2524010 @default.
- W2896445596 hasConcept C2776247918 @default.
- W2896445596 hasConcept C2781181686 @default.
- W2896445596 hasConcept C33923547 @default.
- W2896445596 hasConcept C35651441 @default.
- W2896445596 hasConcept C41008148 @default.
- W2896445596 hasConcept C45900066 @default.
- W2896445596 hasConcept C66938386 @default.
- W2896445596 hasConcept C8880873 @default.
- W2896445596 hasConceptScore W2896445596C105795698 @default.
- W2896445596 hasConceptScore W2896445596C106487976 @default.
- W2896445596 hasConceptScore W2896445596C111335779 @default.
- W2896445596 hasConceptScore W2896445596C11413529 @default.
- W2896445596 hasConceptScore W2896445596C126255220 @default.
- W2896445596 hasConceptScore W2896445596C127413603 @default.
- W2896445596 hasConceptScore W2896445596C141354745 @default.
- W2896445596 hasConceptScore W2896445596C159985019 @default.
- W2896445596 hasConceptScore W2896445596C192562407 @default.
- W2896445596 hasConceptScore W2896445596C21200559 @default.
- W2896445596 hasConceptScore W2896445596C24326235 @default.
- W2896445596 hasConceptScore W2896445596C2524010 @default.
- W2896445596 hasConceptScore W2896445596C2776247918 @default.