Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896461135> ?p ?o ?g. }
- W2896461135 endingPage "328" @default.
- W2896461135 startingPage "309" @default.
- W2896461135 abstract "This work explores the application of deep learning, a machine learning technique that uses deep neural networks (DNN) in its core, to an automated theorem proving (ATP) problem. To this end, we construct a statistical model which quantifies the likelihood that a proof is indeed a correct one of a given proposition. Based on this model, we give a proof-synthesis procedure that searches for a proof in the order of the likelihood. This procedure uses an estimator of the likelihood of an inference rule being applied at each step of a proof. As an implementation of the estimator, we propose a proposition-to-proof architecture, which is a DNN tailored to the automated proof synthesis problem. To empirically demonstrate its usefulness, we apply our model to synthesize proofs of the minimal propositional logic. We train the proposition-to-proof model using a training dataset of proposition–proof pairs. The evaluation against a benchmark set shows the very high accuracy and an improvement to the recent work of neural proof synthesis." @default.
- W2896461135 created "2018-10-26" @default.
- W2896461135 creator A5018002187 @default.
- W2896461135 creator A5064121410 @default.
- W2896461135 date "2018-01-01" @default.
- W2896461135 modified "2023-09-27" @default.
- W2896461135 title "Automated Proof Synthesis for the Minimal Propositional Logic with Deep Neural Networks" @default.
- W2896461135 cites W1600435877 @default.
- W2896461135 cites W1606152849 @default.
- W2896461135 cites W1820726602 @default.
- W2896461135 cites W1966945773 @default.
- W2896461135 cites W2023035194 @default.
- W2896461135 cites W2076164963 @default.
- W2896461135 cites W2101926813 @default.
- W2896461135 cites W2116341502 @default.
- W2896461135 cites W2127391555 @default.
- W2896461135 cites W2136310957 @default.
- W2896461135 cites W2160815625 @default.
- W2896461135 cites W2166822586 @default.
- W2896461135 cites W2194775991 @default.
- W2896461135 cites W2282866165 @default.
- W2896461135 cites W2583369873 @default.
- W2896461135 cites W4212905533 @default.
- W2896461135 doi "https://doi.org/10.1007/978-3-030-02768-1_17" @default.
- W2896461135 hasPublicationYear "2018" @default.
- W2896461135 type Work @default.
- W2896461135 sameAs 2896461135 @default.
- W2896461135 citedByCount "1" @default.
- W2896461135 countsByYear W28964611352021 @default.
- W2896461135 crossrefType "book-chapter" @default.
- W2896461135 hasAuthorship W2896461135A5018002187 @default.
- W2896461135 hasAuthorship W2896461135A5064121410 @default.
- W2896461135 hasConcept C102993220 @default.
- W2896461135 hasConcept C105605280 @default.
- W2896461135 hasConcept C105795698 @default.
- W2896461135 hasConcept C108710211 @default.
- W2896461135 hasConcept C111472728 @default.
- W2896461135 hasConcept C111919701 @default.
- W2896461135 hasConcept C11413529 @default.
- W2896461135 hasConcept C124978682 @default.
- W2896461135 hasConcept C13280743 @default.
- W2896461135 hasConcept C138885662 @default.
- W2896461135 hasConcept C14523651 @default.
- W2896461135 hasConcept C154945302 @default.
- W2896461135 hasConcept C185429906 @default.
- W2896461135 hasConcept C185798385 @default.
- W2896461135 hasConcept C195653647 @default.
- W2896461135 hasConcept C199360897 @default.
- W2896461135 hasConcept C205649164 @default.
- W2896461135 hasConcept C206880738 @default.
- W2896461135 hasConcept C2318724 @default.
- W2896461135 hasConcept C2524010 @default.
- W2896461135 hasConcept C2777152325 @default.
- W2896461135 hasConcept C33203268 @default.
- W2896461135 hasConcept C33923547 @default.
- W2896461135 hasConcept C41008148 @default.
- W2896461135 hasConcept C50644808 @default.
- W2896461135 hasConcept C69562738 @default.
- W2896461135 hasConcept C80444323 @default.
- W2896461135 hasConceptScore W2896461135C102993220 @default.
- W2896461135 hasConceptScore W2896461135C105605280 @default.
- W2896461135 hasConceptScore W2896461135C105795698 @default.
- W2896461135 hasConceptScore W2896461135C108710211 @default.
- W2896461135 hasConceptScore W2896461135C111472728 @default.
- W2896461135 hasConceptScore W2896461135C111919701 @default.
- W2896461135 hasConceptScore W2896461135C11413529 @default.
- W2896461135 hasConceptScore W2896461135C124978682 @default.
- W2896461135 hasConceptScore W2896461135C13280743 @default.
- W2896461135 hasConceptScore W2896461135C138885662 @default.
- W2896461135 hasConceptScore W2896461135C14523651 @default.
- W2896461135 hasConceptScore W2896461135C154945302 @default.
- W2896461135 hasConceptScore W2896461135C185429906 @default.
- W2896461135 hasConceptScore W2896461135C185798385 @default.
- W2896461135 hasConceptScore W2896461135C195653647 @default.
- W2896461135 hasConceptScore W2896461135C199360897 @default.
- W2896461135 hasConceptScore W2896461135C205649164 @default.
- W2896461135 hasConceptScore W2896461135C206880738 @default.
- W2896461135 hasConceptScore W2896461135C2318724 @default.
- W2896461135 hasConceptScore W2896461135C2524010 @default.
- W2896461135 hasConceptScore W2896461135C2777152325 @default.
- W2896461135 hasConceptScore W2896461135C33203268 @default.
- W2896461135 hasConceptScore W2896461135C33923547 @default.
- W2896461135 hasConceptScore W2896461135C41008148 @default.
- W2896461135 hasConceptScore W2896461135C50644808 @default.
- W2896461135 hasConceptScore W2896461135C69562738 @default.
- W2896461135 hasConceptScore W2896461135C80444323 @default.
- W2896461135 hasLocation W28964611351 @default.
- W2896461135 hasOpenAccess W2896461135 @default.
- W2896461135 hasPrimaryLocation W28964611351 @default.
- W2896461135 hasRelatedWork W1504859349 @default.
- W2896461135 hasRelatedWork W1526154391 @default.
- W2896461135 hasRelatedWork W1535660288 @default.
- W2896461135 hasRelatedWork W1602107760 @default.
- W2896461135 hasRelatedWork W1844803781 @default.
- W2896461135 hasRelatedWork W1996064523 @default.
- W2896461135 hasRelatedWork W2023009516 @default.
- W2896461135 hasRelatedWork W2086765598 @default.
- W2896461135 hasRelatedWork W2133944737 @default.