Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896464508> ?p ?o ?g. }
- W2896464508 endingPage "947.e33" @default.
- W2896464508 startingPage "947.e11" @default.
- W2896464508 abstract "The human voice production system is an intricate biological device capable of modulating pitch and loudness. Inherent internal and/or external factors often damage the vocal folds and result in some change of voice. The consequences are reflected in body functioning and emotional standing. Hence, it is paramount to identify voice changes at an early stage and provide the patient with an opportunity to overcome any ramification and enhance their quality of life. In this line of work, automatic detection of voice disorders using machine learning techniques plays a key role, as it is proven to help ease the process of understanding the voice disorder. In recent years, many researchers have investigated techniques for an automated system that helps clinicians with early diagnosis of voice disorders. In this paper, we present a survey of research work conducted on automatic detection of voice disorders and explore how it is able to identify the different types of voice disorders. We also analyze different databases, feature extraction techniques, and machine learning approaches used in these research works." @default.
- W2896464508 created "2018-10-26" @default.
- W2896464508 creator A5032173026 @default.
- W2896464508 creator A5044701876 @default.
- W2896464508 creator A5047938716 @default.
- W2896464508 creator A5048817233 @default.
- W2896464508 date "2019-11-01" @default.
- W2896464508 modified "2023-10-06" @default.
- W2896464508 title "A Survey on Machine Learning Approaches for Automatic Detection of Voice Disorders" @default.
- W2896464508 cites W1446439765 @default.
- W2896464508 cites W1814376937 @default.
- W2896464508 cites W1900636165 @default.
- W2896464508 cites W1924962846 @default.
- W2896464508 cites W1966891831 @default.
- W2896464508 cites W1967553037 @default.
- W2896464508 cites W1969083786 @default.
- W2896464508 cites W1969120982 @default.
- W2896464508 cites W1971656081 @default.
- W2896464508 cites W1971924904 @default.
- W2896464508 cites W1981832414 @default.
- W2896464508 cites W1988974600 @default.
- W2896464508 cites W2000077710 @default.
- W2896464508 cites W2002080627 @default.
- W2896464508 cites W2003097445 @default.
- W2896464508 cites W2015913813 @default.
- W2896464508 cites W2016306208 @default.
- W2896464508 cites W2017031356 @default.
- W2896464508 cites W2019858047 @default.
- W2896464508 cites W2021892355 @default.
- W2896464508 cites W2024032224 @default.
- W2896464508 cites W2028602401 @default.
- W2896464508 cites W2032655680 @default.
- W2896464508 cites W2038705219 @default.
- W2896464508 cites W2039174771 @default.
- W2896464508 cites W2040305186 @default.
- W2896464508 cites W2040669471 @default.
- W2896464508 cites W2044188602 @default.
- W2896464508 cites W2046311975 @default.
- W2896464508 cites W2052372017 @default.
- W2896464508 cites W2054512658 @default.
- W2896464508 cites W2055775654 @default.
- W2896464508 cites W2059003220 @default.
- W2896464508 cites W2064041658 @default.
- W2896464508 cites W2065521691 @default.
- W2896464508 cites W2074578935 @default.
- W2896464508 cites W2077708378 @default.
- W2896464508 cites W2079240096 @default.
- W2896464508 cites W2084627109 @default.
- W2896464508 cites W2084792337 @default.
- W2896464508 cites W2088915426 @default.
- W2896464508 cites W2092514808 @default.
- W2896464508 cites W2093862051 @default.
- W2896464508 cites W2094217267 @default.
- W2896464508 cites W2097645910 @default.
- W2896464508 cites W2108741768 @default.
- W2896464508 cites W2111072639 @default.
- W2896464508 cites W2113615202 @default.
- W2896464508 cites W2121771908 @default.
- W2896464508 cites W2132351779 @default.
- W2896464508 cites W2135039447 @default.
- W2896464508 cites W2138041026 @default.
- W2896464508 cites W2139252078 @default.
- W2896464508 cites W2143903753 @default.
- W2896464508 cites W2145404233 @default.
- W2896464508 cites W2148244507 @default.
- W2896464508 cites W2148681587 @default.
- W2896464508 cites W2157141627 @default.
- W2896464508 cites W2163224754 @default.
- W2896464508 cites W2163443023 @default.
- W2896464508 cites W2170509092 @default.
- W2896464508 cites W2171630550 @default.
- W2896464508 cites W2171850596 @default.
- W2896464508 cites W2213782059 @default.
- W2896464508 cites W2228764222 @default.
- W2896464508 cites W2253498477 @default.
- W2896464508 cites W2302259492 @default.
- W2896464508 cites W2311080055 @default.
- W2896464508 cites W2339666751 @default.
- W2896464508 cites W2344936922 @default.
- W2896464508 cites W2506429203 @default.
- W2896464508 cites W2511310340 @default.
- W2896464508 cites W2530222296 @default.
- W2896464508 cites W2593898237 @default.
- W2896464508 cites W2597842591 @default.
- W2896464508 cites W2609527102 @default.
- W2896464508 cites W2620433108 @default.
- W2896464508 cites W2728922832 @default.
- W2896464508 cites W2774003184 @default.
- W2896464508 cites W766733247 @default.
- W2896464508 doi "https://doi.org/10.1016/j.jvoice.2018.07.014" @default.
- W2896464508 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30316551" @default.
- W2896464508 hasPublicationYear "2019" @default.
- W2896464508 type Work @default.
- W2896464508 sameAs 2896464508 @default.
- W2896464508 citedByCount "88" @default.
- W2896464508 countsByYear W28964645082019 @default.
- W2896464508 countsByYear W28964645082020 @default.
- W2896464508 countsByYear W28964645082021 @default.