Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896466913> ?p ?o ?g. }
- W2896466913 endingPage "61799" @default.
- W2896466913 startingPage "61782" @default.
- W2896466913 abstract "In practical device-free localization (DFL) applications, for enlarging the monitoring area and improving localization accuracy, too many nodes need to be deployed, which results in a large volume of DFL data with high dimensions. This arises a key problem of seeking an accurate and efficient approach for DFL. In order to address this problem, this paper regards DFL as a problem of sparse-representation-based classification; builds a sparse model; and then proposes two sparse-coding-based algorithms. The first algorithm, sparse coding via the iterative shrinkage-thresholding algorithm (SC-ISTA), is efficient for handling high-dimensional data. And then, subspace techniques are further utilized, followed by performing sparse coding in the low-dimensional signal subspace, which leads to the second algorithm termed subspace-based SC-ISTA (SSC-ISTA). Experiments with the real-world data set are conducted for single-target and multi-target localization, and three typical machine learning algorithms, deep learning based on auto encoder, K-nearest neighbor, and orthogonal matching pursuit, are compared. Experimental results show that both SC-ISTA and SSC-ISTA can achieve high localization accuracies of 100% and are robust to noisy data when SNR is greater than 10 dB, and the time costs for sparse coding of SC-ISTA and SSC-ISTA are 2.1 × 10 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-3</sup> s and 2.1 × 10 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-4</sup> s respectively, which indicates that the proposed algorithms outperform the other three ones." @default.
- W2896466913 created "2018-10-26" @default.
- W2896466913 creator A5009225924 @default.
- W2896466913 creator A5009288801 @default.
- W2896466913 creator A5009582696 @default.
- W2896466913 creator A5023248590 @default.
- W2896466913 creator A5056303769 @default.
- W2896466913 creator A5062429830 @default.
- W2896466913 date "2018-01-01" @default.
- W2896466913 modified "2023-09-29" @default.
- W2896466913 title "An Accurate and Efficient Device-Free Localization Approach Based on Sparse Coding in Subspace" @default.
- W2896466913 cites W1492719521 @default.
- W2896466913 cites W1941817920 @default.
- W2896466913 cites W1970398760 @default.
- W2896466913 cites W1988348999 @default.
- W2896466913 cites W2034863431 @default.
- W2896466913 cites W2044831755 @default.
- W2896466913 cites W2045107598 @default.
- W2896466913 cites W2056873685 @default.
- W2896466913 cites W2085205241 @default.
- W2896466913 cites W2085692415 @default.
- W2896466913 cites W2086042828 @default.
- W2896466913 cites W2100556411 @default.
- W2896466913 cites W2106806426 @default.
- W2896466913 cites W2121477819 @default.
- W2896466913 cites W2126300356 @default.
- W2896466913 cites W2129638195 @default.
- W2896466913 cites W2129812935 @default.
- W2896466913 cites W2146949217 @default.
- W2896466913 cites W2151034334 @default.
- W2896466913 cites W2152151699 @default.
- W2896466913 cites W2152178374 @default.
- W2896466913 cites W2154332973 @default.
- W2896466913 cites W2157291767 @default.
- W2896466913 cites W2164692160 @default.
- W2896466913 cites W2170589361 @default.
- W2896466913 cites W2241665719 @default.
- W2896466913 cites W2314627352 @default.
- W2896466913 cites W2338095309 @default.
- W2896466913 cites W2340240548 @default.
- W2896466913 cites W2341859130 @default.
- W2896466913 cites W2344330137 @default.
- W2896466913 cites W2460055519 @default.
- W2896466913 cites W2550769397 @default.
- W2896466913 cites W2558891025 @default.
- W2896466913 cites W2584565614 @default.
- W2896466913 cites W2594663467 @default.
- W2896466913 cites W2595124690 @default.
- W2896466913 cites W2605793178 @default.
- W2896466913 cites W2610531996 @default.
- W2896466913 cites W2612932412 @default.
- W2896466913 cites W2783165089 @default.
- W2896466913 cites W2783231089 @default.
- W2896466913 cites W2786890897 @default.
- W2896466913 cites W2790168642 @default.
- W2896466913 cites W2791441927 @default.
- W2896466913 cites W2794105321 @default.
- W2896466913 cites W2796478058 @default.
- W2896466913 cites W2801636644 @default.
- W2896466913 cites W2963526543 @default.
- W2896466913 cites W767874142 @default.
- W2896466913 doi "https://doi.org/10.1109/access.2018.2876034" @default.
- W2896466913 hasPublicationYear "2018" @default.
- W2896466913 type Work @default.
- W2896466913 sameAs 2896466913 @default.
- W2896466913 citedByCount "29" @default.
- W2896466913 countsByYear W28964669132019 @default.
- W2896466913 countsByYear W28964669132020 @default.
- W2896466913 countsByYear W28964669132021 @default.
- W2896466913 countsByYear W28964669132022 @default.
- W2896466913 countsByYear W28964669132023 @default.
- W2896466913 crossrefType "journal-article" @default.
- W2896466913 hasAuthorship W2896466913A5009225924 @default.
- W2896466913 hasAuthorship W2896466913A5009288801 @default.
- W2896466913 hasAuthorship W2896466913A5009582696 @default.
- W2896466913 hasAuthorship W2896466913A5023248590 @default.
- W2896466913 hasAuthorship W2896466913A5056303769 @default.
- W2896466913 hasAuthorship W2896466913A5062429830 @default.
- W2896466913 hasBestOaLocation W28964669131 @default.
- W2896466913 hasConcept C105795698 @default.
- W2896466913 hasConcept C111919701 @default.
- W2896466913 hasConcept C11413529 @default.
- W2896466913 hasConcept C118505674 @default.
- W2896466913 hasConcept C124066611 @default.
- W2896466913 hasConcept C124851039 @default.
- W2896466913 hasConcept C153180895 @default.
- W2896466913 hasConcept C154945302 @default.
- W2896466913 hasConcept C156872377 @default.
- W2896466913 hasConcept C179518139 @default.
- W2896466913 hasConcept C32834561 @default.
- W2896466913 hasConcept C33923547 @default.
- W2896466913 hasConcept C41008148 @default.
- W2896466913 hasConcept C77637269 @default.
- W2896466913 hasConceptScore W2896466913C105795698 @default.
- W2896466913 hasConceptScore W2896466913C111919701 @default.
- W2896466913 hasConceptScore W2896466913C11413529 @default.
- W2896466913 hasConceptScore W2896466913C118505674 @default.
- W2896466913 hasConceptScore W2896466913C124066611 @default.