Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896469379> ?p ?o ?g. }
- W2896469379 endingPage "5318" @default.
- W2896469379 startingPage "5318" @default.
- W2896469379 abstract "With the goal to screen high-risk populations for oral cancer in low- and middle-income countries (LMICs), we have developed a low-cost, portable, easy to use smartphone-based intraoral dual-modality imaging platform. In this paper we present an image classification approach based on autofluorescence and white light images using deep learning methods. The information from the autofluorescence and white light image pair is extracted, calculated, and fused to feed the deep learning neural networks. We have investigated and compared the performance of different convolutional neural networks, transfer learning, and several regularization techniques for oral cancer classification. Our experimental results demonstrate the effectiveness of deep learning methods in classifying dual-modal images for oral cancer detection." @default.
- W2896469379 created "2018-10-26" @default.
- W2896469379 creator A5000898917 @default.
- W2896469379 creator A5001303284 @default.
- W2896469379 creator A5039661451 @default.
- W2896469379 creator A5042891055 @default.
- W2896469379 creator A5046365008 @default.
- W2896469379 creator A5049267481 @default.
- W2896469379 creator A5057755807 @default.
- W2896469379 creator A5060024996 @default.
- W2896469379 creator A5060306119 @default.
- W2896469379 creator A5064147067 @default.
- W2896469379 creator A5066291292 @default.
- W2896469379 creator A5067626526 @default.
- W2896469379 creator A5069031580 @default.
- W2896469379 date "2018-10-10" @default.
- W2896469379 modified "2023-10-14" @default.
- W2896469379 title "Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning" @default.
- W2896469379 cites W1997212925 @default.
- W2896469379 cites W2009220795 @default.
- W2896469379 cites W2023590221 @default.
- W2896469379 cites W2024309008 @default.
- W2896469379 cites W2045019299 @default.
- W2896469379 cites W2069330528 @default.
- W2896469379 cites W2096463002 @default.
- W2896469379 cites W2098216819 @default.
- W2896469379 cites W2099114975 @default.
- W2896469379 cites W2099697510 @default.
- W2896469379 cites W2105320648 @default.
- W2896469379 cites W2108598243 @default.
- W2896469379 cites W2118124820 @default.
- W2896469379 cites W2120686466 @default.
- W2896469379 cites W2126971517 @default.
- W2896469379 cites W2133306435 @default.
- W2896469379 cites W2137392373 @default.
- W2896469379 cites W2139586215 @default.
- W2896469379 cites W2148084983 @default.
- W2896469379 cites W2149612705 @default.
- W2896469379 cites W2152062007 @default.
- W2896469379 cites W2156286752 @default.
- W2896469379 cites W2165698076 @default.
- W2896469379 cites W2176559250 @default.
- W2896469379 cites W2253429366 @default.
- W2896469379 cites W2306570595 @default.
- W2896469379 cites W2320025553 @default.
- W2896469379 cites W2346062110 @default.
- W2896469379 cites W2535284666 @default.
- W2896469379 cites W2557738935 @default.
- W2896469379 cites W2581082771 @default.
- W2896469379 cites W2592888171 @default.
- W2896469379 cites W2592929672 @default.
- W2896469379 cites W2617092180 @default.
- W2896469379 cites W2682360066 @default.
- W2896469379 cites W2754017308 @default.
- W2896469379 cites W2919115771 @default.
- W2896469379 doi "https://doi.org/10.1364/boe.9.005318" @default.
- W2896469379 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6238918" @default.
- W2896469379 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30460130" @default.
- W2896469379 hasPublicationYear "2018" @default.
- W2896469379 type Work @default.
- W2896469379 sameAs 2896469379 @default.
- W2896469379 citedByCount "72" @default.
- W2896469379 countsByYear W28964693792019 @default.
- W2896469379 countsByYear W28964693792020 @default.
- W2896469379 countsByYear W28964693792021 @default.
- W2896469379 countsByYear W28964693792022 @default.
- W2896469379 countsByYear W28964693792023 @default.
- W2896469379 crossrefType "journal-article" @default.
- W2896469379 hasAuthorship W2896469379A5000898917 @default.
- W2896469379 hasAuthorship W2896469379A5001303284 @default.
- W2896469379 hasAuthorship W2896469379A5039661451 @default.
- W2896469379 hasAuthorship W2896469379A5042891055 @default.
- W2896469379 hasAuthorship W2896469379A5046365008 @default.
- W2896469379 hasAuthorship W2896469379A5049267481 @default.
- W2896469379 hasAuthorship W2896469379A5057755807 @default.
- W2896469379 hasAuthorship W2896469379A5060024996 @default.
- W2896469379 hasAuthorship W2896469379A5060306119 @default.
- W2896469379 hasAuthorship W2896469379A5064147067 @default.
- W2896469379 hasAuthorship W2896469379A5066291292 @default.
- W2896469379 hasAuthorship W2896469379A5067626526 @default.
- W2896469379 hasAuthorship W2896469379A5069031580 @default.
- W2896469379 hasBestOaLocation W28964693791 @default.
- W2896469379 hasConcept C108583219 @default.
- W2896469379 hasConcept C115961682 @default.
- W2896469379 hasConcept C119857082 @default.
- W2896469379 hasConcept C120665830 @default.
- W2896469379 hasConcept C121332964 @default.
- W2896469379 hasConcept C150899416 @default.
- W2896469379 hasConcept C153180895 @default.
- W2896469379 hasConcept C154945302 @default.
- W2896469379 hasConcept C179687394 @default.
- W2896469379 hasConcept C31972630 @default.
- W2896469379 hasConcept C41008148 @default.
- W2896469379 hasConcept C75294576 @default.
- W2896469379 hasConcept C81363708 @default.
- W2896469379 hasConcept C91881484 @default.
- W2896469379 hasConcept C9417928 @default.
- W2896469379 hasConceptScore W2896469379C108583219 @default.