Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896473185> ?p ?o ?g. }
- W2896473185 endingPage "12760" @default.
- W2896473185 startingPage "12752" @default.
- W2896473185 abstract "Liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is a major analytical technique used for nontargeted identification of metabolites in biological fluids. Typically, in LC-ESI-MS/MS based database assisted structure elucidation pipelines, the exact mass of an unknown compound is used to mine a chemical structure database to acquire an initial set of possible candidates. Subsequent matching of the collision induced dissociation (CID) spectrum of the unknown to the CID spectra of candidate structures facilitates identification. However, this approach often fails because of the large numbers of potential candidates (i.e., false positives) for which CID spectra are not available. To overcome this problem, CID fragmentation predication programs have been developed, but these also have limited success if large numbers of isomers with similar CID spectra are present in the candidate set. In this study, we investigated the use of a retention index (RI) predictive model as an orthogonal method to help improve identification rates. The model was used to eliminate candidate structures whose predicted RI values differed significantly from the experimentally determined RI value of the unknown compound. We tested this approach using a set of ninety-one endogenous metabolites and four in silico CID fragmentation algorithms: CFM-ID, CSI:FingerID, Mass Frontier, and MetFrag. Candidate sets obtained from PubChem and the Human Metabolite Database (HMDB) were ranked with and without RI filtering followed by in silico spectral matching. Upon RI filtering, 12 of the ninety-one metabolites were eliminated from their respective candidate sets, i.e., were scored incorrectly as negatives. For the remaining seventy-nine compounds, we show that RI filtering eliminated an average of 58% from PubChem candidate sets. This resulted in an approximately 2-fold improvement in average rankings when using CFM-ID, Mass Frontier, and MetFrag. In addition, RI filtering slightly increased the occurrence of number one rankings for all 4 fragmentation algorithms. However, RI filtering did not significantly improve average rankings when HMDB was used as the candidate database, nor did it significantly improve average rankings when using CSI:FingerID. Overall, we show that the current RI model incorrectly eliminated more true positives (12) than were expected (4-5) on the basis of the filtering method. However, it slightly improved the number of correct first place rankings and improved overall average rankings when using CFM-ID, Mass Frontier, and MetFrag." @default.
- W2896473185 created "2018-10-26" @default.
- W2896473185 creator A5018645917 @default.
- W2896473185 creator A5040658276 @default.
- W2896473185 creator A5065872566 @default.
- W2896473185 creator A5070398510 @default.
- W2896473185 date "2018-10-15" @default.
- W2896473185 modified "2023-10-14" @default.
- W2896473185 title "Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics" @default.
- W2896473185 cites W1601495365 @default.
- W2896473185 cites W1901616594 @default.
- W2896473185 cites W1971384936 @default.
- W2896473185 cites W1973985148 @default.
- W2896473185 cites W1999426587 @default.
- W2896473185 cites W2002473101 @default.
- W2896473185 cites W2015503332 @default.
- W2896473185 cites W2051773486 @default.
- W2896473185 cites W2053098824 @default.
- W2896473185 cites W2055491422 @default.
- W2896473185 cites W2059327215 @default.
- W2896473185 cites W2065104255 @default.
- W2896473185 cites W2067637119 @default.
- W2896473185 cites W2075356606 @default.
- W2896473185 cites W2084375915 @default.
- W2896473185 cites W2092818812 @default.
- W2896473185 cites W2101394823 @default.
- W2896473185 cites W2107183338 @default.
- W2896473185 cites W2122312029 @default.
- W2896473185 cites W2136022660 @default.
- W2896473185 cites W2169546341 @default.
- W2896473185 cites W2179948434 @default.
- W2896473185 cites W2235147056 @default.
- W2896473185 cites W2285468881 @default.
- W2896473185 cites W2333394028 @default.
- W2896473185 cites W2346249565 @default.
- W2896473185 cites W2603853601 @default.
- W2896473185 cites W2793572854 @default.
- W2896473185 cites W305858006 @default.
- W2896473185 cites W3105963012 @default.
- W2896473185 cites W4294326454 @default.
- W2896473185 cites W619336257 @default.
- W2896473185 doi "https://doi.org/10.1021/acs.analchem.8b03118" @default.
- W2896473185 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8378237" @default.
- W2896473185 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30350614" @default.
- W2896473185 hasPublicationYear "2018" @default.
- W2896473185 type Work @default.
- W2896473185 sameAs 2896473185 @default.
- W2896473185 citedByCount "37" @default.
- W2896473185 countsByYear W28964731852019 @default.
- W2896473185 countsByYear W28964731852020 @default.
- W2896473185 countsByYear W28964731852021 @default.
- W2896473185 countsByYear W28964731852022 @default.
- W2896473185 countsByYear W28964731852023 @default.
- W2896473185 crossrefType "journal-article" @default.
- W2896473185 hasAuthorship W2896473185A5018645917 @default.
- W2896473185 hasAuthorship W2896473185A5040658276 @default.
- W2896473185 hasAuthorship W2896473185A5065872566 @default.
- W2896473185 hasAuthorship W2896473185A5070398510 @default.
- W2896473185 hasBestOaLocation W28964731852 @default.
- W2896473185 hasConcept C116834253 @default.
- W2896473185 hasConcept C123460561 @default.
- W2896473185 hasConcept C154945302 @default.
- W2896473185 hasConcept C185592680 @default.
- W2896473185 hasConcept C186060115 @default.
- W2896473185 hasConcept C21565614 @default.
- W2896473185 hasConcept C41008148 @default.
- W2896473185 hasConcept C43617362 @default.
- W2896473185 hasConcept C50644808 @default.
- W2896473185 hasConcept C59822182 @default.
- W2896473185 hasConcept C85666147 @default.
- W2896473185 hasConcept C86803240 @default.
- W2896473185 hasConceptScore W2896473185C116834253 @default.
- W2896473185 hasConceptScore W2896473185C123460561 @default.
- W2896473185 hasConceptScore W2896473185C154945302 @default.
- W2896473185 hasConceptScore W2896473185C185592680 @default.
- W2896473185 hasConceptScore W2896473185C186060115 @default.
- W2896473185 hasConceptScore W2896473185C21565614 @default.
- W2896473185 hasConceptScore W2896473185C41008148 @default.
- W2896473185 hasConceptScore W2896473185C43617362 @default.
- W2896473185 hasConceptScore W2896473185C50644808 @default.
- W2896473185 hasConceptScore W2896473185C59822182 @default.
- W2896473185 hasConceptScore W2896473185C85666147 @default.
- W2896473185 hasConceptScore W2896473185C86803240 @default.
- W2896473185 hasFunder F4320337354 @default.
- W2896473185 hasIssue "21" @default.
- W2896473185 hasLocation W28964731851 @default.
- W2896473185 hasLocation W28964731852 @default.
- W2896473185 hasOpenAccess W2896473185 @default.
- W2896473185 hasPrimaryLocation W28964731851 @default.
- W2896473185 hasRelatedWork W1979549540 @default.
- W2896473185 hasRelatedWork W2003174742 @default.
- W2896473185 hasRelatedWork W2007646009 @default.
- W2896473185 hasRelatedWork W2008751190 @default.
- W2896473185 hasRelatedWork W2091902727 @default.
- W2896473185 hasRelatedWork W2279763510 @default.
- W2896473185 hasRelatedWork W2362972152 @default.
- W2896473185 hasRelatedWork W2372608198 @default.
- W2896473185 hasRelatedWork W3001020386 @default.