Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896473765> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2896473765 abstract "1 -BioMa(Biophysical Model Application) is an application for analyzing, parameterizing and running modeling solutions. BioMa can be extended by the third parties who can add new modeling solutions to meet their requirements of crop modeling. CropSyst is an advanced model for crop growth simulation in the world. CropSyst model has been embedded in BioMa platform with some improvements, for example, with less default parameters, different model algorithm and more user-friendly interface, and links to other model solutions etc. Agricultural production system is increasingly threatened by climate change, the CropSyst model imbedded in BioMa in 2015 year was used to simulate and predict crop. Based on the latest BioMa-site model, and using LAI data, soil, crop phenology, above ground BioMass and yield data from 2012 to 2014 which come from 11 counties of winter wheat main producing areas in Hengshui city, Hebei province, North China, this paper firstly calibrated some model's parameters and evaluated the CropSyst model by comparing model estimates to field data, and after that, simulated and predicted the winter wheat BioMass and yield in “near-future” around 2030 (2021–2040) and “far-future” around 2050 (2041–2060) based on BioMa spatial, and compared model estimates results under two different future climate scenarios. The simulated results showed that using CropSyst model to simulate the winter wheat yield of North China is promising. The Pearson's correlation coefficient between observed yield and simulated yield is 0.97, the Modelling Efficiency is 0.94, and the Index of Agreement is 0.98. The winter wheat dry yield is higher in “near-future” around 2030(2021-2040) than “far-future” around 2050(2041-2060) both in climate scenario No. 1 and climate No. 9 based on 15grids mean data in North China, and dry AGB has the same tendency. Under both climate scenarios, winter wheat yield and above ground BioMass are much lower with irrigation situation, which showed that moister is a key factor to winter wheat during the growth. This study got a set of parameters that proved to be suitable to simulate winter wheat growth process and production in China and predicted future yield based on different climate scenarios and condition which could be a reference for future wheat management and national policy." @default.
- W2896473765 created "2018-10-26" @default.
- W2896473765 creator A5080166516 @default.
- W2896473765 creator A5089098780 @default.
- W2896473765 date "2018-08-01" @default.
- W2896473765 modified "2023-09-27" @default.
- W2896473765 title "Predicting Winter Wheat Yield in 2030 and 2050 in North China Based on BioMa-Site and BioMa-Spatial" @default.
- W2896473765 cites W1924782523 @default.
- W2896473765 cites W1987918801 @default.
- W2896473765 cites W2018786898 @default.
- W2896473765 cites W2019022785 @default.
- W2896473765 cites W2020259750 @default.
- W2896473765 cites W2078556489 @default.
- W2896473765 cites W2085902144 @default.
- W2896473765 cites W2086877628 @default.
- W2896473765 doi "https://doi.org/10.1109/agro-geoinformatics.2018.8475998" @default.
- W2896473765 hasPublicationYear "2018" @default.
- W2896473765 type Work @default.
- W2896473765 sameAs 2896473765 @default.
- W2896473765 citedByCount "1" @default.
- W2896473765 countsByYear W28964737652022 @default.
- W2896473765 crossrefType "proceedings-article" @default.
- W2896473765 hasAuthorship W2896473765A5080166516 @default.
- W2896473765 hasAuthorship W2896473765A5089098780 @default.
- W2896473765 hasConcept C134121241 @default.
- W2896473765 hasConcept C166957645 @default.
- W2896473765 hasConcept C191897082 @default.
- W2896473765 hasConcept C191935318 @default.
- W2896473765 hasConcept C192562407 @default.
- W2896473765 hasConcept C205649164 @default.
- W2896473765 hasConcept C39432304 @default.
- W2896473765 hasConcept C6557445 @default.
- W2896473765 hasConcept C86803240 @default.
- W2896473765 hasConceptScore W2896473765C134121241 @default.
- W2896473765 hasConceptScore W2896473765C166957645 @default.
- W2896473765 hasConceptScore W2896473765C191897082 @default.
- W2896473765 hasConceptScore W2896473765C191935318 @default.
- W2896473765 hasConceptScore W2896473765C192562407 @default.
- W2896473765 hasConceptScore W2896473765C205649164 @default.
- W2896473765 hasConceptScore W2896473765C39432304 @default.
- W2896473765 hasConceptScore W2896473765C6557445 @default.
- W2896473765 hasConceptScore W2896473765C86803240 @default.
- W2896473765 hasLocation W28964737651 @default.
- W2896473765 hasOpenAccess W2896473765 @default.
- W2896473765 hasPrimaryLocation W28964737651 @default.
- W2896473765 hasRelatedWork W1971911313 @default.
- W2896473765 hasRelatedWork W1984114909 @default.
- W2896473765 hasRelatedWork W1992072918 @default.
- W2896473765 hasRelatedWork W2049755385 @default.
- W2896473765 hasRelatedWork W2093318723 @default.
- W2896473765 hasRelatedWork W2107984857 @default.
- W2896473765 hasRelatedWork W2298067813 @default.
- W2896473765 hasRelatedWork W2782141976 @default.
- W2896473765 hasRelatedWork W2921783274 @default.
- W2896473765 hasRelatedWork W4214541130 @default.
- W2896473765 isParatext "false" @default.
- W2896473765 isRetracted "false" @default.
- W2896473765 magId "2896473765" @default.
- W2896473765 workType "article" @default.