Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896474013> ?p ?o ?g. }
- W2896474013 endingPage "68" @default.
- W2896474013 startingPage "52" @default.
- W2896474013 abstract "AMP-activated protein kinase (AMPK), a heterotrimer with α1 or α2 catalytic subunits, acts as an energy sensor and regulates cellular homeostasis. Whereas AMPKα1 is necessary for myogenesis in skeletal muscle, the role of AMPKα2 in myogenic differentiation and energy metabolism-related gene expressions has remained unclear. We here examined the specific roles of AMPKα1 and AMPKα2 in the myogenic differentiation and mitochondria and energy metabolism-related gene expressions in C2C12 cells.Stable C2C12 cell lines expressing a scramble short hairpin RNA (shRNA) or shRNAs specific for AMPKα1 (shAMPKα1), AMPKα2 (shAMPKα2), or both AMPKα1 and AMPKα2 (shPanAMPK) were generated by lentivirus infection. Lentiviruses encoding wild-type AMPKα2 (WT-AMPKα2) or AMPKα2 with a mutated nuclear localization signal (ΔNLS-AMPKα2) were also constructed for introduction into myoblasts. Myogenesis was induced by culture of C2C12 myoblasts for 6 days in differentiation medium.The amount of AMPKα2 increased progressively, whereas that of AMPKα1 remained constant, during the differentiation of myoblasts into myotubes. Expression of shPanAMPK or shAMPKα1, but not that of shAMPKα2, attenuated the proliferation of myoblasts as well as the phosphorylation of both acetyl-CoA carboxylase and the autophagy-initiating kinase ULK1 in myotubes. Up-regulation of myogenin mRNA, a marker for the middle stage of myogenesis, was attenuated in differentiating myotubes expressing shPanAMPK or shAMPKα1. In contrast, up-regulation of gene expression for muscle creatine kinase (MCK), a late-stage differentiation marker, as well as for genes related to mitochondrial biogenesis including the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α1 and α4 (PGC-1α1 and PGC-1α4) and mitochondria-specific genes such as cytochrome c were attenuated in myotubes expressing shAMPKα2 or shPanAMPK. The diameter of myotubes expressing shPanAMPK or shAMPKα2 was reduced, whereas that of those expressing shAMPKα1 was increased, compared with myotubes expressing scramble shRNA. A portion of AMPKα2 became localized to the nucleus during myogenic differentiation. The AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) and 2-deoxyglucose (2DG) each induced the nuclear translocation of WT-AMPKα2, but not that of ΔNLS-AMPKα2. Finally, expression of WT-AMPKα2 increased the mRNA abundance of PGC-1α1 and MCK mRNAs as well as cell diameter and tended to increase that of PGC-1α4, whereas that of ΔNLS-AMPKα2 increased only the abundance of MCK mRNA, in myotubes depleted of endogenous AMPKα2.TAMPKα1 and AMPKα2 have distinct roles in myogenic differentiation of C2C12 cells, with AMPKα1 contributing to the middle stage of myogenesis and AMPKα2 to the late stage. AMPKα2 regulates gene expressions including MCK, PGC-1α1 and PGC-1α4 and mitochondria-specific genes such as cytochrome c during the late stage of differentiation. Furthermore, the nuclear translocation of AMPKα2 is necessary for maintenance of PGC-1α1 mRNA during myogenesis." @default.
- W2896474013 created "2018-10-26" @default.
- W2896474013 creator A5003650328 @default.
- W2896474013 creator A5021418644 @default.
- W2896474013 creator A5025482788 @default.
- W2896474013 creator A5054271905 @default.
- W2896474013 creator A5061512519 @default.
- W2896474013 date "2019-01-01" @default.
- W2896474013 modified "2023-10-18" @default.
- W2896474013 title "Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells" @default.
- W2896474013 cites W137375516 @default.
- W2896474013 cites W1559520987 @default.
- W2896474013 cites W1597446425 @default.
- W2896474013 cites W1876043561 @default.
- W2896474013 cites W1948000840 @default.
- W2896474013 cites W1964606633 @default.
- W2896474013 cites W1964739304 @default.
- W2896474013 cites W1967251674 @default.
- W2896474013 cites W1970637701 @default.
- W2896474013 cites W1975924645 @default.
- W2896474013 cites W1976792745 @default.
- W2896474013 cites W1982450147 @default.
- W2896474013 cites W1983834588 @default.
- W2896474013 cites W1998060705 @default.
- W2896474013 cites W2022267544 @default.
- W2896474013 cites W2029857264 @default.
- W2896474013 cites W2037918682 @default.
- W2896474013 cites W2039879202 @default.
- W2896474013 cites W2042444876 @default.
- W2896474013 cites W2061842603 @default.
- W2896474013 cites W2069721298 @default.
- W2896474013 cites W2077645437 @default.
- W2896474013 cites W2079580613 @default.
- W2896474013 cites W2083655799 @default.
- W2896474013 cites W2093569973 @default.
- W2896474013 cites W2095939924 @default.
- W2896474013 cites W2102776209 @default.
- W2896474013 cites W2103659405 @default.
- W2896474013 cites W2104083311 @default.
- W2896474013 cites W2114349736 @default.
- W2896474013 cites W2119473877 @default.
- W2896474013 cites W2124536446 @default.
- W2896474013 cites W2124798116 @default.
- W2896474013 cites W2125732396 @default.
- W2896474013 cites W2126337135 @default.
- W2896474013 cites W2134183508 @default.
- W2896474013 cites W2137737168 @default.
- W2896474013 cites W2138313400 @default.
- W2896474013 cites W2149928685 @default.
- W2896474013 cites W2150551377 @default.
- W2896474013 cites W2156131965 @default.
- W2896474013 cites W2157193327 @default.
- W2896474013 cites W2158905364 @default.
- W2896474013 cites W2159119036 @default.
- W2896474013 cites W2160615487 @default.
- W2896474013 cites W2170502456 @default.
- W2896474013 cites W2170880090 @default.
- W2896474013 cites W2180909681 @default.
- W2896474013 cites W2229640146 @default.
- W2896474013 cites W2320228393 @default.
- W2896474013 cites W2519117803 @default.
- W2896474013 cites W2763871199 @default.
- W2896474013 cites W4254937834 @default.
- W2896474013 doi "https://doi.org/10.1016/j.metabol.2018.10.003" @default.
- W2896474013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30359677" @default.
- W2896474013 hasPublicationYear "2019" @default.
- W2896474013 type Work @default.
- W2896474013 sameAs 2896474013 @default.
- W2896474013 citedByCount "21" @default.
- W2896474013 countsByYear W28964740132019 @default.
- W2896474013 countsByYear W28964740132020 @default.
- W2896474013 countsByYear W28964740132021 @default.
- W2896474013 countsByYear W28964740132022 @default.
- W2896474013 countsByYear W28964740132023 @default.
- W2896474013 crossrefType "journal-article" @default.
- W2896474013 hasAuthorship W2896474013A5003650328 @default.
- W2896474013 hasAuthorship W2896474013A5021418644 @default.
- W2896474013 hasAuthorship W2896474013A5025482788 @default.
- W2896474013 hasAuthorship W2896474013A5054271905 @default.
- W2896474013 hasAuthorship W2896474013A5061512519 @default.
- W2896474013 hasConcept C184235292 @default.
- W2896474013 hasConcept C185592680 @default.
- W2896474013 hasConcept C207200792 @default.
- W2896474013 hasConcept C2776780712 @default.
- W2896474013 hasConcept C2780124434 @default.
- W2896474013 hasConcept C3763915 @default.
- W2896474013 hasConcept C60278653 @default.
- W2896474013 hasConcept C86803240 @default.
- W2896474013 hasConcept C95444343 @default.
- W2896474013 hasConcept C97029542 @default.
- W2896474013 hasConceptScore W2896474013C184235292 @default.
- W2896474013 hasConceptScore W2896474013C185592680 @default.
- W2896474013 hasConceptScore W2896474013C207200792 @default.
- W2896474013 hasConceptScore W2896474013C2776780712 @default.
- W2896474013 hasConceptScore W2896474013C2780124434 @default.
- W2896474013 hasConceptScore W2896474013C3763915 @default.
- W2896474013 hasConceptScore W2896474013C60278653 @default.
- W2896474013 hasConceptScore W2896474013C86803240 @default.