Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896479849> ?p ?o ?g. }
- W2896479849 endingPage "691" @default.
- W2896479849 startingPage "683" @default.
- W2896479849 abstract "Immune-mediated diseases affect more than 20% of the population, and many autoimmune diseases affect the skin. Drug repurposing (or repositioning) is a cost-effective approach for finding drugs that can be used to treat diseases for which they are currently not prescribed. We implemented an efficient bioinformatics approach using word embedding to summarize drug information from more than 20 million articles and applied machine learning to model the drug-disease relationship. We trained our drug repurposing approach separately on nine cutaneous diseases (including psoriasis, atopic dermatitis, and alopecia areata) and eight other immune-mediated diseases and obtained a mean area under the receiver operating characteristic of 0.93 in cross-validation. Focusing in particular on psoriasis, a chronic inflammatory condition of skin that affects more than 100 million people worldwide, we were able to confirm drugs that are known to be effective for psoriasis and to identify potential candidates used to treat other diseases. Furthermore, the targets of drug candidates predicted by our approach were significantly enriched among genes differentially expressed in psoriatic lesional skin from a large-scale RNA sequencing cohort. Although our algorithm cannot be used to determine clinical efficacy, our work provides an approach for suggesting drugs for repurposing to immune-mediated cutaneous diseases. Immune-mediated diseases affect more than 20% of the population, and many autoimmune diseases affect the skin. Drug repurposing (or repositioning) is a cost-effective approach for finding drugs that can be used to treat diseases for which they are currently not prescribed. We implemented an efficient bioinformatics approach using word embedding to summarize drug information from more than 20 million articles and applied machine learning to model the drug-disease relationship. We trained our drug repurposing approach separately on nine cutaneous diseases (including psoriasis, atopic dermatitis, and alopecia areata) and eight other immune-mediated diseases and obtained a mean area under the receiver operating characteristic of 0.93 in cross-validation. Focusing in particular on psoriasis, a chronic inflammatory condition of skin that affects more than 100 million people worldwide, we were able to confirm drugs that are known to be effective for psoriasis and to identify potential candidates used to treat other diseases. Furthermore, the targets of drug candidates predicted by our approach were significantly enriched among genes differentially expressed in psoriatic lesional skin from a large-scale RNA sequencing cohort. Although our algorithm cannot be used to determine clinical efficacy, our work provides an approach for suggesting drugs for repurposing to immune-mediated cutaneous diseases." @default.
- W2896479849 created "2018-10-26" @default.
- W2896479849 creator A5015004042 @default.
- W2896479849 creator A5024997718 @default.
- W2896479849 creator A5045051245 @default.
- W2896479849 creator A5054852821 @default.
- W2896479849 creator A5057653412 @default.
- W2896479849 creator A5058475475 @default.
- W2896479849 creator A5065734072 @default.
- W2896479849 date "2019-03-01" @default.
- W2896479849 modified "2023-10-03" @default.
- W2896479849 title "Drug Repurposing Prediction for Immune-Mediated Cutaneous Diseases using a Word-Embedding–Based Machine Learning Approach" @default.
- W2896479849 cites W1569114583 @default.
- W2896479849 cites W1975212224 @default.
- W2896479849 cites W1982945330 @default.
- W2896479849 cites W1989590412 @default.
- W2896479849 cites W1992407562 @default.
- W2896479849 cites W1992442866 @default.
- W2896479849 cites W1995723686 @default.
- W2896479849 cites W2008419958 @default.
- W2896479849 cites W2010822393 @default.
- W2896479849 cites W2012746420 @default.
- W2896479849 cites W2019707847 @default.
- W2896479849 cites W2025085781 @default.
- W2896479849 cites W2030571587 @default.
- W2896479849 cites W2062263566 @default.
- W2896479849 cites W2074233022 @default.
- W2896479849 cites W2077625041 @default.
- W2896479849 cites W2082611684 @default.
- W2896479849 cites W2086108244 @default.
- W2896479849 cites W2094792719 @default.
- W2896479849 cites W2094936328 @default.
- W2896479849 cites W2097834966 @default.
- W2896479849 cites W2105050951 @default.
- W2896479849 cites W2127132032 @default.
- W2896479849 cites W2128054164 @default.
- W2896479849 cites W2137632714 @default.
- W2896479849 cites W2147152072 @default.
- W2896479849 cites W2147670638 @default.
- W2896479849 cites W2152881983 @default.
- W2896479849 cites W2159583324 @default.
- W2896479849 cites W2171469118 @default.
- W2896479849 cites W2234082985 @default.
- W2896479849 cites W2250539671 @default.
- W2896479849 cites W2251771443 @default.
- W2896479849 cites W2273267066 @default.
- W2896479849 cites W2277827306 @default.
- W2896479849 cites W2295260089 @default.
- W2896479849 cites W2493916176 @default.
- W2896479849 cites W2588284375 @default.
- W2896479849 cites W2605739715 @default.
- W2896479849 cites W2615873585 @default.
- W2896479849 cites W2624775565 @default.
- W2896479849 cites W2734608416 @default.
- W2896479849 cites W2749491127 @default.
- W2896479849 cites W2753199411 @default.
- W2896479849 cites W2762358889 @default.
- W2896479849 cites W2767891136 @default.
- W2896479849 cites W2770849724 @default.
- W2896479849 cites W2775185492 @default.
- W2896479849 cites W2963017553 @default.
- W2896479849 cites W2963491027 @default.
- W2896479849 doi "https://doi.org/10.1016/j.jid.2018.09.018" @default.
- W2896479849 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6387843" @default.
- W2896479849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30342048" @default.
- W2896479849 hasPublicationYear "2019" @default.
- W2896479849 type Work @default.
- W2896479849 sameAs 2896479849 @default.
- W2896479849 citedByCount "45" @default.
- W2896479849 countsByYear W28964798492019 @default.
- W2896479849 countsByYear W28964798492020 @default.
- W2896479849 countsByYear W28964798492021 @default.
- W2896479849 countsByYear W28964798492022 @default.
- W2896479849 countsByYear W28964798492023 @default.
- W2896479849 crossrefType "journal-article" @default.
- W2896479849 hasAuthorship W2896479849A5015004042 @default.
- W2896479849 hasAuthorship W2896479849A5024997718 @default.
- W2896479849 hasAuthorship W2896479849A5045051245 @default.
- W2896479849 hasAuthorship W2896479849A5054852821 @default.
- W2896479849 hasAuthorship W2896479849A5057653412 @default.
- W2896479849 hasAuthorship W2896479849A5058475475 @default.
- W2896479849 hasAuthorship W2896479849A5065734072 @default.
- W2896479849 hasBestOaLocation W28964798491 @default.
- W2896479849 hasConcept C103637391 @default.
- W2896479849 hasConcept C18903297 @default.
- W2896479849 hasConcept C203014093 @default.
- W2896479849 hasConcept C2780035454 @default.
- W2896479849 hasConcept C2780564577 @default.
- W2896479849 hasConcept C2908647359 @default.
- W2896479849 hasConcept C519536355 @default.
- W2896479849 hasConcept C60644358 @default.
- W2896479849 hasConcept C71924100 @default.
- W2896479849 hasConcept C86803240 @default.
- W2896479849 hasConcept C8891405 @default.
- W2896479849 hasConcept C98274493 @default.
- W2896479849 hasConcept C99454951 @default.
- W2896479849 hasConceptScore W2896479849C103637391 @default.
- W2896479849 hasConceptScore W2896479849C18903297 @default.