Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896480147> ?p ?o ?g. }
- W2896480147 endingPage "15168" @default.
- W2896480147 startingPage "15145" @default.
- W2896480147 abstract "Abstract. Mobile laboratory measurements provide information on the distribution of CH4 emissions from point sources such as oil and gas wells, but uncertainties are poorly constrained or justified. Sources of uncertainty and bias in ground-based Gaussian-derived emissions estimates from a mobile platform were analyzed in a combined field and modeling study. In a field campaign where 1009 natural gas sites in Pennsylvania were sampled, a hierarchical measurement strategy was implemented with increasing complexity. Of these sites, ∼ 93 % were sampled with an average of 2 transects in < 5 min (standard sampling), ∼ 5 % were sampled with an average of 10 transects in < 15 min (replicate sampling) and ∼ 2 % were sampled with an average of 20 transects in 15–60 min. For sites sampled with 20 transects, a tower was simultaneously deployed to measure high-frequency meteorological data (intensive sampling). Five of the intensive sampling sites were modeled using large eddy simulation (LES) to reproduce CH4 concentrations in a turbulent environment. The LES output and LES-derived emission estimates were used to compare with the results of a standard Gaussian approach. The LES and Gaussian-derived emission rates agreed within a factor of 2 in all except one case; the average difference was 25 %. A controlled release was also used to investigate sources of bias in either technique. The Gaussian method agreed with the release rate more closely than the LES, underlining the importance of inputs as sources of uncertainty for the LES. The LES was also used as a virtual experiment to determine an optimum number of repeat transects and spacing needed to produce representative statistics. Approximately 10 repeat transects spaced at least 1 min apart are required to produce statistics similar to the observed variability over the entire LES simulation period of 30 min. Sources of uncertainty from source location, wind speed, background concentration and atmospheric stability were also analyzed. The largest contribution to the total uncertainty was from atmospheric variability; this is caused by insufficient averaging of turbulent variables in the atmosphere (also known as random errors). Atmospheric variability was quantified by repeat measurements at individual sites under relatively constant conditions. Accurate quantification of atmospheric variability provides a reasonable estimate of the lower bound for emission uncertainty. The uncertainty bounds calculated for this work for sites with > 50 ppb enhancements were 0.05–6.5q (where q is the emission rate) for single-transect sites and 0.5–2.7q for sites with 10+ transects. More transects allow a mean emission rate to be calculated with better precision. It is recommended that future mobile monitoring schemes quantify atmospheric variability, and attempt to minimize it, under representative conditions to accurately estimate emission uncertainty. These recommendations are general to mobile-laboratory-derived emissions from other sources that can be treated as point sources." @default.
- W2896480147 created "2018-10-26" @default.
- W2896480147 creator A5004427460 @default.
- W2896480147 creator A5004732749 @default.
- W2896480147 creator A5018614741 @default.
- W2896480147 creator A5020746135 @default.
- W2896480147 creator A5031909245 @default.
- W2896480147 creator A5037780892 @default.
- W2896480147 creator A5044551635 @default.
- W2896480147 creator A5046269215 @default.
- W2896480147 creator A5046609004 @default.
- W2896480147 creator A5050241365 @default.
- W2896480147 creator A5065825859 @default.
- W2896480147 creator A5087427970 @default.
- W2896480147 creator A5090211186 @default.
- W2896480147 date "2018-10-22" @default.
- W2896480147 modified "2023-10-14" @default.
- W2896480147 title "Quantifying uncertainties from mobile-laboratory-derived emissions of well pads using inverse Gaussian methods" @default.
- W2896480147 cites W1194792020 @default.
- W2896480147 cites W1524994900 @default.
- W2896480147 cites W1621068464 @default.
- W2896480147 cites W1651791465 @default.
- W2896480147 cites W1817410551 @default.
- W2896480147 cites W1896105787 @default.
- W2896480147 cites W1967077052 @default.
- W2896480147 cites W1968792511 @default.
- W2896480147 cites W1969967986 @default.
- W2896480147 cites W1970237667 @default.
- W2896480147 cites W1978600378 @default.
- W2896480147 cites W1982139112 @default.
- W2896480147 cites W1992092046 @default.
- W2896480147 cites W1993548323 @default.
- W2896480147 cites W1996557666 @default.
- W2896480147 cites W1997125833 @default.
- W2896480147 cites W2010432564 @default.
- W2896480147 cites W2022262840 @default.
- W2896480147 cites W2036341880 @default.
- W2896480147 cites W2037667280 @default.
- W2896480147 cites W2043811452 @default.
- W2896480147 cites W2046252407 @default.
- W2896480147 cites W2047872389 @default.
- W2896480147 cites W2055410329 @default.
- W2896480147 cites W2057115206 @default.
- W2896480147 cites W2058522703 @default.
- W2896480147 cites W2058534834 @default.
- W2896480147 cites W2058655571 @default.
- W2896480147 cites W2072898975 @default.
- W2896480147 cites W2078259522 @default.
- W2896480147 cites W2081761799 @default.
- W2896480147 cites W2099496998 @default.
- W2896480147 cites W2100222675 @default.
- W2896480147 cites W2106416060 @default.
- W2896480147 cites W2114269493 @default.
- W2896480147 cites W2115809823 @default.
- W2896480147 cites W2116552092 @default.
- W2896480147 cites W2118360225 @default.
- W2896480147 cites W2126204080 @default.
- W2896480147 cites W2132250747 @default.
- W2896480147 cites W2139628290 @default.
- W2896480147 cites W2145851836 @default.
- W2896480147 cites W2148755582 @default.
- W2896480147 cites W2149794122 @default.
- W2896480147 cites W2156092401 @default.
- W2896480147 cites W2167840832 @default.
- W2896480147 cites W2230245890 @default.
- W2896480147 cites W2262380927 @default.
- W2896480147 cites W2268150050 @default.
- W2896480147 cites W2273238302 @default.
- W2896480147 cites W2275714991 @default.
- W2896480147 cites W2287563718 @default.
- W2896480147 cites W2321228163 @default.
- W2896480147 cites W2321757161 @default.
- W2896480147 cites W2332622998 @default.
- W2896480147 cites W2335584831 @default.
- W2896480147 cites W2341236131 @default.
- W2896480147 cites W2371935587 @default.
- W2896480147 cites W2411721878 @default.
- W2896480147 cites W2417215226 @default.
- W2896480147 cites W2419764301 @default.
- W2896480147 cites W2465119585 @default.
- W2896480147 cites W2466011617 @default.
- W2896480147 cites W2510926794 @default.
- W2896480147 cites W2531435547 @default.
- W2896480147 cites W2570717862 @default.
- W2896480147 cites W2674884973 @default.
- W2896480147 cites W2784576383 @default.
- W2896480147 cites W323959784 @default.
- W2896480147 cites W4254558880 @default.
- W2896480147 cites W588172898 @default.
- W2896480147 doi "https://doi.org/10.5194/acp-18-15145-2018" @default.
- W2896480147 hasPublicationYear "2018" @default.
- W2896480147 type Work @default.
- W2896480147 sameAs 2896480147 @default.
- W2896480147 citedByCount "38" @default.
- W2896480147 countsByYear W28964801472019 @default.
- W2896480147 countsByYear W28964801472020 @default.
- W2896480147 countsByYear W28964801472021 @default.
- W2896480147 countsByYear W28964801472022 @default.