Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896483746> ?p ?o ?g. }
- W2896483746 endingPage "5665" @default.
- W2896483746 startingPage "5659" @default.
- W2896483746 abstract "Clinical implementation of magnetic resonance imaging (MRI)-only radiotherapy requires a method to derive synthetic CT image (S-CT) for dose calculation. This study investigated the feasibility of building a deep convolutional neural network for MRI-based S-CT generation and evaluated the dosimetric accuracy on prostate IMRT planning.A paired CT and T2-weighted MR images were acquired from each of 51 prostate cancer patients. Fifteen pairs were randomly chosen as tested set and the remaining 36 pairs as training set. The training subjects were augmented by applying artificial deformations and feed to a two-dimensional U-net which contains 23 convolutional layers and 25.29 million trainable parameters. The U-net represents a nonlinear function with input an MR slice and output the corresponding S-CT slice. The mean absolute error (MAE) of Hounsfield unit (HU) between the true CT and S-CT images was used to evaluate the HU estimation accuracy. IMRT plans with dose 79.2 Gy prescribed to the PTV were applied using the true CT images. The true CT images then were replaced by the S-CT images and the dose matrices were recalculated on the same plan and compared to the one obtained from the true CT using gamma index analysis and absolute point dose discrepancy.The U-net was trained from scratch in 58.67 h using a GP100-GPU. The computation time for generating a new S-CT volume image was 3.84-7.65 s. Within body, the (mean ± SD) of MAE was (29.96 ± 4.87) HU. The 1%/1 mm and 2%/2 mm gamma pass rates were over 98.03% and 99.36% respectively. The DVH parameters discrepancy was less than 0.87% and the maximum point dose discrepancy within PTV was less than 1.01% respect to the prescription.The U-net can generate S-CT images from conventional MR image within seconds with high dosimetric accuracy for prostate IMRT plan." @default.
- W2896483746 created "2018-10-26" @default.
- W2896483746 creator A5011103509 @default.
- W2896483746 creator A5031178158 @default.
- W2896483746 creator A5053241576 @default.
- W2896483746 creator A5072574772 @default.
- W2896483746 date "2018-11-13" @default.
- W2896483746 modified "2023-10-17" @default.
- W2896483746 title "Technical Note: U‐net‐generated synthetic CT images for magnetic resonance imaging‐only prostate intensity‐modulated radiation therapy treatment planning" @default.
- W2896483746 cites W1822713087 @default.
- W2896483746 cites W1963072903 @default.
- W2896483746 cites W1967121735 @default.
- W2896483746 cites W2020195866 @default.
- W2896483746 cites W2021177063 @default.
- W2896483746 cites W2035397698 @default.
- W2896483746 cites W2044967973 @default.
- W2896483746 cites W2072566913 @default.
- W2896483746 cites W2080858163 @default.
- W2896483746 cites W2086284908 @default.
- W2896483746 cites W2087726204 @default.
- W2896483746 cites W2140866726 @default.
- W2896483746 cites W2166485554 @default.
- W2896483746 cites W2208340121 @default.
- W2896483746 cites W2281851093 @default.
- W2896483746 cites W2311671475 @default.
- W2896483746 cites W2346145504 @default.
- W2896483746 cites W2464708700 @default.
- W2896483746 cites W2503788014 @default.
- W2896483746 cites W2523468284 @default.
- W2896483746 cites W2561999579 @default.
- W2896483746 cites W2597382898 @default.
- W2896483746 cites W2609372059 @default.
- W2896483746 cites W2766152284 @default.
- W2896483746 cites W2808312419 @default.
- W2896483746 cites W2962793481 @default.
- W2896483746 cites W2963176524 @default.
- W2896483746 cites W3101048700 @default.
- W2896483746 cites W3101123465 @default.
- W2896483746 cites W3102986501 @default.
- W2896483746 doi "https://doi.org/10.1002/mp.13247" @default.
- W2896483746 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30341917" @default.
- W2896483746 hasPublicationYear "2018" @default.
- W2896483746 type Work @default.
- W2896483746 sameAs 2896483746 @default.
- W2896483746 citedByCount "74" @default.
- W2896483746 countsByYear W28964837462019 @default.
- W2896483746 countsByYear W28964837462020 @default.
- W2896483746 countsByYear W28964837462021 @default.
- W2896483746 countsByYear W28964837462022 @default.
- W2896483746 countsByYear W28964837462023 @default.
- W2896483746 crossrefType "journal-article" @default.
- W2896483746 hasAuthorship W2896483746A5011103509 @default.
- W2896483746 hasAuthorship W2896483746A5031178158 @default.
- W2896483746 hasAuthorship W2896483746A5053241576 @default.
- W2896483746 hasAuthorship W2896483746A5072574772 @default.
- W2896483746 hasBestOaLocation W28964837461 @default.
- W2896483746 hasConcept C11413529 @default.
- W2896483746 hasConcept C121608353 @default.
- W2896483746 hasConcept C126322002 @default.
- W2896483746 hasConcept C126838900 @default.
- W2896483746 hasConcept C143409427 @default.
- W2896483746 hasConcept C154945302 @default.
- W2896483746 hasConcept C187954543 @default.
- W2896483746 hasConcept C201645570 @default.
- W2896483746 hasConcept C2776235491 @default.
- W2896483746 hasConcept C2780192828 @default.
- W2896483746 hasConcept C2989005 @default.
- W2896483746 hasConcept C31601959 @default.
- W2896483746 hasConcept C33923547 @default.
- W2896483746 hasConcept C41008148 @default.
- W2896483746 hasConcept C509974204 @default.
- W2896483746 hasConcept C544519230 @default.
- W2896483746 hasConcept C58489278 @default.
- W2896483746 hasConcept C71924100 @default.
- W2896483746 hasConcept C75088862 @default.
- W2896483746 hasConcept C81363708 @default.
- W2896483746 hasConcept C9267231 @default.
- W2896483746 hasConceptScore W2896483746C11413529 @default.
- W2896483746 hasConceptScore W2896483746C121608353 @default.
- W2896483746 hasConceptScore W2896483746C126322002 @default.
- W2896483746 hasConceptScore W2896483746C126838900 @default.
- W2896483746 hasConceptScore W2896483746C143409427 @default.
- W2896483746 hasConceptScore W2896483746C154945302 @default.
- W2896483746 hasConceptScore W2896483746C187954543 @default.
- W2896483746 hasConceptScore W2896483746C201645570 @default.
- W2896483746 hasConceptScore W2896483746C2776235491 @default.
- W2896483746 hasConceptScore W2896483746C2780192828 @default.
- W2896483746 hasConceptScore W2896483746C2989005 @default.
- W2896483746 hasConceptScore W2896483746C31601959 @default.
- W2896483746 hasConceptScore W2896483746C33923547 @default.
- W2896483746 hasConceptScore W2896483746C41008148 @default.
- W2896483746 hasConceptScore W2896483746C509974204 @default.
- W2896483746 hasConceptScore W2896483746C544519230 @default.
- W2896483746 hasConceptScore W2896483746C58489278 @default.
- W2896483746 hasConceptScore W2896483746C71924100 @default.
- W2896483746 hasConceptScore W2896483746C75088862 @default.
- W2896483746 hasConceptScore W2896483746C81363708 @default.
- W2896483746 hasConceptScore W2896483746C9267231 @default.