Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896491032> ?p ?o ?g. }
- W2896491032 abstract "Computer models have been an important tool to determine soil bulk density. This soil property is fundamental to estimate soil carbon reserves and consequently to understand the global carbon cycle. The estimation of soil bulk density is not a trivial task since it demands an intensive and often impractical work. The purpose of this paper is to evaluate the performance of a pedotransfer function against an Artificial Neural Networks to estimate soil bulk density for soils at Brazilian biomes. The first one consists of a linear model composed of a Least Square method. The latter employs a robust committee of multilayer perceptron networks and a model selection procedure based on k-fold cross-validation. The data are composed of 3404 soil layers distributed in different Brazilian regions and with different uses. The proposed non-linear regressor presents higher precision when compared to the linear model, and requires less information to do so. Additionally, the developed solution brings to light the assumed relationship between soil bulk density and some soil chemical properties." @default.
- W2896491032 created "2018-10-26" @default.
- W2896491032 creator A5005019913 @default.
- W2896491032 creator A5042027990 @default.
- W2896491032 creator A5044901219 @default.
- W2896491032 creator A5047733466 @default.
- W2896491032 creator A5054360246 @default.
- W2896491032 creator A5059713737 @default.
- W2896491032 creator A5089528829 @default.
- W2896491032 creator A5091691173 @default.
- W2896491032 date "2018-07-01" @default.
- W2896491032 modified "2023-10-16" @default.
- W2896491032 title "Brazilian Soil Bulk Density Prediction Based on a Committee of Neural Regressors" @default.
- W2896491032 cites W1150966094 @default.
- W2896491032 cites W1991011977 @default.
- W2896491032 cites W1995945562 @default.
- W2896491032 cites W2004427069 @default.
- W2896491032 cites W2030888282 @default.
- W2896491032 cites W2036432226 @default.
- W2896491032 cites W2059424688 @default.
- W2896491032 cites W2067592249 @default.
- W2896491032 cites W2076118331 @default.
- W2896491032 cites W2094112533 @default.
- W2896491032 cites W2098874108 @default.
- W2896491032 cites W2103644547 @default.
- W2896491032 cites W2115195937 @default.
- W2896491032 cites W2124287399 @default.
- W2896491032 cites W2124453750 @default.
- W2896491032 cites W2128758128 @default.
- W2896491032 cites W2141212940 @default.
- W2896491032 cites W2146220345 @default.
- W2896491032 cites W2160166502 @default.
- W2896491032 cites W2169228003 @default.
- W2896491032 cites W2230952005 @default.
- W2896491032 cites W2316060816 @default.
- W2896491032 cites W2399954014 @default.
- W2896491032 cites W2548163443 @default.
- W2896491032 cites W2590016403 @default.
- W2896491032 cites W2595918220 @default.
- W2896491032 cites W2603631783 @default.
- W2896491032 cites W2612335113 @default.
- W2896491032 cites W2615396498 @default.
- W2896491032 cites W2658937621 @default.
- W2896491032 cites W2734552871 @default.
- W2896491032 cites W2734652954 @default.
- W2896491032 cites W2736218754 @default.
- W2896491032 cites W2742219699 @default.
- W2896491032 cites W2762200128 @default.
- W2896491032 cites W2765660665 @default.
- W2896491032 cites W2765920915 @default.
- W2896491032 cites W4238202755 @default.
- W2896491032 cites W4255375128 @default.
- W2896491032 doi "https://doi.org/10.1109/ijcnn.2018.8489177" @default.
- W2896491032 hasPublicationYear "2018" @default.
- W2896491032 type Work @default.
- W2896491032 sameAs 2896491032 @default.
- W2896491032 citedByCount "1" @default.
- W2896491032 countsByYear W28964910322020 @default.
- W2896491032 crossrefType "proceedings-article" @default.
- W2896491032 hasAuthorship W2896491032A5005019913 @default.
- W2896491032 hasAuthorship W2896491032A5042027990 @default.
- W2896491032 hasAuthorship W2896491032A5044901219 @default.
- W2896491032 hasAuthorship W2896491032A5047733466 @default.
- W2896491032 hasAuthorship W2896491032A5054360246 @default.
- W2896491032 hasAuthorship W2896491032A5059713737 @default.
- W2896491032 hasAuthorship W2896491032A5089528829 @default.
- W2896491032 hasAuthorship W2896491032A5091691173 @default.
- W2896491032 hasConcept C110872660 @default.
- W2896491032 hasConcept C119857082 @default.
- W2896491032 hasConcept C159390177 @default.
- W2896491032 hasConcept C159750122 @default.
- W2896491032 hasConcept C164285268 @default.
- W2896491032 hasConcept C179717631 @default.
- W2896491032 hasConcept C18903297 @default.
- W2896491032 hasConcept C39432304 @default.
- W2896491032 hasConcept C39464130 @default.
- W2896491032 hasConcept C41008148 @default.
- W2896491032 hasConcept C50644808 @default.
- W2896491032 hasConcept C63184880 @default.
- W2896491032 hasConcept C86803240 @default.
- W2896491032 hasConcept C89920630 @default.
- W2896491032 hasConcept C93973069 @default.
- W2896491032 hasConceptScore W2896491032C110872660 @default.
- W2896491032 hasConceptScore W2896491032C119857082 @default.
- W2896491032 hasConceptScore W2896491032C159390177 @default.
- W2896491032 hasConceptScore W2896491032C159750122 @default.
- W2896491032 hasConceptScore W2896491032C164285268 @default.
- W2896491032 hasConceptScore W2896491032C179717631 @default.
- W2896491032 hasConceptScore W2896491032C18903297 @default.
- W2896491032 hasConceptScore W2896491032C39432304 @default.
- W2896491032 hasConceptScore W2896491032C39464130 @default.
- W2896491032 hasConceptScore W2896491032C41008148 @default.
- W2896491032 hasConceptScore W2896491032C50644808 @default.
- W2896491032 hasConceptScore W2896491032C63184880 @default.
- W2896491032 hasConceptScore W2896491032C86803240 @default.
- W2896491032 hasConceptScore W2896491032C89920630 @default.
- W2896491032 hasConceptScore W2896491032C93973069 @default.
- W2896491032 hasLocation W28964910321 @default.
- W2896491032 hasOpenAccess W2896491032 @default.
- W2896491032 hasPrimaryLocation W28964910321 @default.