Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896492727> ?p ?o ?g. }
- W2896492727 abstract "The dominant theme of this thesis is the construction of matrix representations of finite solvable groups using a suitable system of For a finite solvable group $G$ of order $N = p_{1}p_{2}dots p_{n}$, where $p_{i}$'s are primes, there always exists a subnormal series: $langle {e} rangle = G_{o} < G_{1} < dots < G_{n} = G$ such that $G_{i}/G_{i-1}$ is isomorphic to a cyclic group of order $p_{i}$, $i = 1,2,dots,n$. Associated with this series, there exists a system of generators consisting $n$ elements $x_{1}, x_{2}, dots, x_{n}$ (say), such that $G_{i} = langle x_{1}, x_{2}, dots, x_{i} rangle$, $i = 1,2,dots,n$, which is called a long system of generators. In terms of this system of generators and conjugacy class sum of $x_{i}$ in $G_{i}$, $i = 1,2, dots, n$, we present an algorithm for constructing the irreducible matrix representations of $G$ over $mathbb{C}$ within the group algebra $mathbb{C}[G]$. This algorithmic construction needs the knowledge of primitive central idempotents, a well defined set of primitive (not necessarily central) idempotents and the diagonal subalgebra of $mathbb{C}[G]$. In terms of this system of generators, we give simple expressions for the primitive central idempotents, a well defined system of primitive (not necessarily central) idempotents and a convenient set of generators of the diagonal subalgebra of $mathbb{C}[G]$. For a finite abelian group, we present an algorithm for constructing the inequivalent irreducible matrix representations over a field of characteristic $0$ or prime to the order of the group and a systematic way of computing the primitive central idempotents of the group algebra. Besides that, we give simple expressions of the primitive central idempotents of the rational group algebra of a finite abelian group using a long presentation and it's Wedderburn decomposition." @default.
- W2896492727 created "2018-10-26" @default.
- W2896492727 creator A5040631447 @default.
- W2896492727 date "2018-10-06" @default.
- W2896492727 modified "2023-09-27" @default.
- W2896492727 title "Algorithmic construction of representations of finite solvable groups" @default.
- W2896492727 cites W1485454318 @default.
- W2896492727 cites W1497527009 @default.
- W2896492727 cites W1508421660 @default.
- W2896492727 cites W1528928668 @default.
- W2896492727 cites W1534413569 @default.
- W2896492727 cites W1561337879 @default.
- W2896492727 cites W1595474793 @default.
- W2896492727 cites W1596185498 @default.
- W2896492727 cites W1998529728 @default.
- W2896492727 cites W2039660064 @default.
- W2896492727 cites W2046150489 @default.
- W2896492727 cites W2093507505 @default.
- W2896492727 cites W2127315534 @default.
- W2896492727 cites W2140095159 @default.
- W2896492727 cites W2322808352 @default.
- W2896492727 cites W3093281440 @default.
- W2896492727 cites W320365718 @default.
- W2896492727 cites W586642719 @default.
- W2896492727 cites W602697327 @default.
- W2896492727 cites W627839463 @default.
- W2896492727 cites W655478034 @default.
- W2896492727 hasPublicationYear "2018" @default.
- W2896492727 type Work @default.
- W2896492727 sameAs 2896492727 @default.
- W2896492727 citedByCount "0" @default.
- W2896492727 crossrefType "posted-content" @default.
- W2896492727 hasAuthorship W2896492727A5040631447 @default.
- W2896492727 hasConcept C10138342 @default.
- W2896492727 hasConcept C106487976 @default.
- W2896492727 hasConcept C111472728 @default.
- W2896492727 hasConcept C114614502 @default.
- W2896492727 hasConcept C118615104 @default.
- W2896492727 hasConcept C121332964 @default.
- W2896492727 hasConcept C130367717 @default.
- W2896492727 hasConcept C136119220 @default.
- W2896492727 hasConcept C136170076 @default.
- W2896492727 hasConcept C138885662 @default.
- W2896492727 hasConcept C142292226 @default.
- W2896492727 hasConcept C143724316 @default.
- W2896492727 hasConcept C151730666 @default.
- W2896492727 hasConcept C159985019 @default.
- W2896492727 hasConcept C162324750 @default.
- W2896492727 hasConcept C182306322 @default.
- W2896492727 hasConcept C192562407 @default.
- W2896492727 hasConcept C202444582 @default.
- W2896492727 hasConcept C2524010 @default.
- W2896492727 hasConcept C2780586882 @default.
- W2896492727 hasConcept C2781311116 @default.
- W2896492727 hasConcept C33923547 @default.
- W2896492727 hasConcept C62520636 @default.
- W2896492727 hasConcept C67996461 @default.
- W2896492727 hasConcept C86803240 @default.
- W2896492727 hasConcept C87945829 @default.
- W2896492727 hasConceptScore W2896492727C10138342 @default.
- W2896492727 hasConceptScore W2896492727C106487976 @default.
- W2896492727 hasConceptScore W2896492727C111472728 @default.
- W2896492727 hasConceptScore W2896492727C114614502 @default.
- W2896492727 hasConceptScore W2896492727C118615104 @default.
- W2896492727 hasConceptScore W2896492727C121332964 @default.
- W2896492727 hasConceptScore W2896492727C130367717 @default.
- W2896492727 hasConceptScore W2896492727C136119220 @default.
- W2896492727 hasConceptScore W2896492727C136170076 @default.
- W2896492727 hasConceptScore W2896492727C138885662 @default.
- W2896492727 hasConceptScore W2896492727C142292226 @default.
- W2896492727 hasConceptScore W2896492727C143724316 @default.
- W2896492727 hasConceptScore W2896492727C151730666 @default.
- W2896492727 hasConceptScore W2896492727C159985019 @default.
- W2896492727 hasConceptScore W2896492727C162324750 @default.
- W2896492727 hasConceptScore W2896492727C182306322 @default.
- W2896492727 hasConceptScore W2896492727C192562407 @default.
- W2896492727 hasConceptScore W2896492727C202444582 @default.
- W2896492727 hasConceptScore W2896492727C2524010 @default.
- W2896492727 hasConceptScore W2896492727C2780586882 @default.
- W2896492727 hasConceptScore W2896492727C2781311116 @default.
- W2896492727 hasConceptScore W2896492727C33923547 @default.
- W2896492727 hasConceptScore W2896492727C62520636 @default.
- W2896492727 hasConceptScore W2896492727C67996461 @default.
- W2896492727 hasConceptScore W2896492727C86803240 @default.
- W2896492727 hasConceptScore W2896492727C87945829 @default.
- W2896492727 hasLocation W28964927271 @default.
- W2896492727 hasOpenAccess W2896492727 @default.
- W2896492727 hasPrimaryLocation W28964927271 @default.
- W2896492727 hasRelatedWork W1039036013 @default.
- W2896492727 hasRelatedWork W1534595332 @default.
- W2896492727 hasRelatedWork W1554822465 @default.
- W2896492727 hasRelatedWork W1566270128 @default.
- W2896492727 hasRelatedWork W1807233238 @default.
- W2896492727 hasRelatedWork W1887519185 @default.
- W2896492727 hasRelatedWork W1973410385 @default.
- W2896492727 hasRelatedWork W2010996848 @default.
- W2896492727 hasRelatedWork W2019477370 @default.
- W2896492727 hasRelatedWork W2030523213 @default.
- W2896492727 hasRelatedWork W2030719845 @default.
- W2896492727 hasRelatedWork W2048601450 @default.