Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896496331> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2896496331 endingPage "365" @default.
- W2896496331 startingPage "350" @default.
- W2896496331 abstract "Abstract Asphalt pavement defects e.g. cracks, potholes, rutting, often cause significant safety and economic problems, thus, to automatic detect these defects is vital for pavement maintaining and management. The fact that 3D defect detection methods is superior to traditional 2D methods and manual survey methods in terms of accuracy and comprehensiveness has been widely recognized. Based on 3D laser scanning pavement data, an automatic defect detection method is proposed to detect pavement cracks and pavement deformation defects information simultaneously in this paper. Specifically, a sparse processing algorithm for 3D pavement profiles is first designed to extract crack candidate points and deformations support points, these processing is based on the assumption that the cracks are microscopic local defects while deformations are macroscopic defects in profiles. Then, the crack information can be detected by combining the extracted candidate points and an improved minimum cost spanning tree algorithm. On the other hand, the deformation depth information is acquired based on the profile standard contours which are constructed by profile envelopes and deformation support points, the accurate location and classification information of deformation defects can be obtained by the regional depth property. Experimental tests were conducted using real measured 3D pavement data containing two categories of defects. The experimental results showed that, based on the 3D laser scanning data, the proposed method can effectively detect typical cracks under different road conditions and environments, with the detection accuracy above 98%. Furthermore, different types of deformation defects including potholes, rutting, shoving, subsidence, can also be accurately detected with location error less than 8.7%." @default.
- W2896496331 created "2018-10-26" @default.
- W2896496331 creator A5030027991 @default.
- W2896496331 creator A5035500741 @default.
- W2896496331 creator A5055349294 @default.
- W2896496331 creator A5058602237 @default.
- W2896496331 creator A5058678906 @default.
- W2896496331 creator A5070093927 @default.
- W2896496331 creator A5071852172 @default.
- W2896496331 date "2018-12-01" @default.
- W2896496331 modified "2023-10-17" @default.
- W2896496331 title "Automatic pavement defect detection using 3D laser profiling technology" @default.
- W2896496331 cites W1644863801 @default.
- W2896496331 cites W1838423138 @default.
- W2896496331 cites W1965144413 @default.
- W2896496331 cites W2069182664 @default.
- W2896496331 cites W2105302349 @default.
- W2896496331 cites W2132239597 @default.
- W2896496331 cites W2346804089 @default.
- W2896496331 cites W2523358814 @default.
- W2896496331 cites W2560550165 @default.
- W2896496331 cites W2589774830 @default.
- W2896496331 cites W2735085291 @default.
- W2896496331 cites W2748643398 @default.
- W2896496331 cites W2748746495 @default.
- W2896496331 cites W2751040651 @default.
- W2896496331 cites W2769644921 @default.
- W2896496331 doi "https://doi.org/10.1016/j.autcon.2018.09.019" @default.
- W2896496331 hasPublicationYear "2018" @default.
- W2896496331 type Work @default.
- W2896496331 sameAs 2896496331 @default.
- W2896496331 citedByCount "77" @default.
- W2896496331 countsByYear W28964963312019 @default.
- W2896496331 countsByYear W28964963312020 @default.
- W2896496331 countsByYear W28964963312021 @default.
- W2896496331 countsByYear W28964963312022 @default.
- W2896496331 countsByYear W28964963312023 @default.
- W2896496331 crossrefType "journal-article" @default.
- W2896496331 hasAuthorship W2896496331A5030027991 @default.
- W2896496331 hasAuthorship W2896496331A5035500741 @default.
- W2896496331 hasAuthorship W2896496331A5055349294 @default.
- W2896496331 hasAuthorship W2896496331A5058602237 @default.
- W2896496331 hasAuthorship W2896496331A5058678906 @default.
- W2896496331 hasAuthorship W2896496331A5070093927 @default.
- W2896496331 hasAuthorship W2896496331A5071852172 @default.
- W2896496331 hasConcept C111919701 @default.
- W2896496331 hasConcept C120665830 @default.
- W2896496331 hasConcept C121332964 @default.
- W2896496331 hasConcept C127413603 @default.
- W2896496331 hasConcept C141349535 @default.
- W2896496331 hasConcept C187191949 @default.
- W2896496331 hasConcept C41008148 @default.
- W2896496331 hasConcept C520434653 @default.
- W2896496331 hasConcept C77595967 @default.
- W2896496331 hasConceptScore W2896496331C111919701 @default.
- W2896496331 hasConceptScore W2896496331C120665830 @default.
- W2896496331 hasConceptScore W2896496331C121332964 @default.
- W2896496331 hasConceptScore W2896496331C127413603 @default.
- W2896496331 hasConceptScore W2896496331C141349535 @default.
- W2896496331 hasConceptScore W2896496331C187191949 @default.
- W2896496331 hasConceptScore W2896496331C41008148 @default.
- W2896496331 hasConceptScore W2896496331C520434653 @default.
- W2896496331 hasConceptScore W2896496331C77595967 @default.
- W2896496331 hasLocation W28964963311 @default.
- W2896496331 hasOpenAccess W2896496331 @default.
- W2896496331 hasPrimaryLocation W28964963311 @default.
- W2896496331 hasRelatedWork W1602801198 @default.
- W2896496331 hasRelatedWork W1607090722 @default.
- W2896496331 hasRelatedWork W2145546708 @default.
- W2896496331 hasRelatedWork W2167571567 @default.
- W2896496331 hasRelatedWork W2348361596 @default.
- W2896496331 hasRelatedWork W2350287655 @default.
- W2896496331 hasRelatedWork W2792115777 @default.
- W2896496331 hasRelatedWork W2899084033 @default.
- W2896496331 hasRelatedWork W2947857949 @default.
- W2896496331 hasRelatedWork W3018118667 @default.
- W2896496331 hasVolume "96" @default.
- W2896496331 isParatext "false" @default.
- W2896496331 isRetracted "false" @default.
- W2896496331 magId "2896496331" @default.
- W2896496331 workType "article" @default.