Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896525219> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2896525219 abstract "We aim to show how a neural network based machine learning projective clustering algorithm, Projective Adaptive Resonance Theory (PART), can be effectively used to provide data-informed sports decisions. We illustrate this data-driven decision recommendation for AS Roma player market in the Summer 2018 season, using the two separate databases of fourty-seven attributes taken from Football Manager 2018 for each of the twenty-four soccer player, with the first including players of the AS Roma squad 2017-18, and the second consisting of all players linked with transfer moves to AS Roma. This is high dimensional data as players should be grouped only in terms of their performance with respect to a small subset of attributes. Projective clustering analyses provide a purely data-driven analysis to identify critical attributes and attribute characteristics for a group of players to form a natural cluster (in lower dimensional data space) in an unsupervised way. By merging the two databases, our unsupervised clustering analysis provides evidence-based recommendations about the club team formation, and in particular, the decision to buy and sell players within the same clusters, under different scenarios including financial constraints." @default.
- W2896525219 created "2018-10-26" @default.
- W2896525219 creator A5070112575 @default.
- W2896525219 creator A5083596713 @default.
- W2896525219 date "2017-01-01" @default.
- W2896525219 modified "2023-09-27" @default.
- W2896525219 title "An application of PART to the Football Manager data for players clusters analyses to inform club team formation" @default.
- W2896525219 cites W1594924988 @default.
- W2896525219 cites W1977496278 @default.
- W2896525219 cites W2042035594 @default.
- W2896525219 cites W2065811242 @default.
- W2896525219 cites W2101433970 @default.
- W2896525219 cites W2160680757 @default.
- W2896525219 doi "https://doi.org/10.3934/bdia.2018002" @default.
- W2896525219 hasPublicationYear "2017" @default.
- W2896525219 type Work @default.
- W2896525219 sameAs 2896525219 @default.
- W2896525219 citedByCount "0" @default.
- W2896525219 crossrefType "journal-article" @default.
- W2896525219 hasAuthorship W2896525219A5070112575 @default.
- W2896525219 hasAuthorship W2896525219A5083596713 @default.
- W2896525219 hasConcept C105702510 @default.
- W2896525219 hasConcept C111919701 @default.
- W2896525219 hasConcept C119857082 @default.
- W2896525219 hasConcept C154945302 @default.
- W2896525219 hasConcept C164866538 @default.
- W2896525219 hasConcept C166957645 @default.
- W2896525219 hasConcept C199360897 @default.
- W2896525219 hasConcept C205649164 @default.
- W2896525219 hasConcept C2522767166 @default.
- W2896525219 hasConcept C2776459890 @default.
- W2896525219 hasConcept C2778444522 @default.
- W2896525219 hasConcept C2778572836 @default.
- W2896525219 hasConcept C41008148 @default.
- W2896525219 hasConcept C71924100 @default.
- W2896525219 hasConcept C73555534 @default.
- W2896525219 hasConcept C92835128 @default.
- W2896525219 hasConceptScore W2896525219C105702510 @default.
- W2896525219 hasConceptScore W2896525219C111919701 @default.
- W2896525219 hasConceptScore W2896525219C119857082 @default.
- W2896525219 hasConceptScore W2896525219C154945302 @default.
- W2896525219 hasConceptScore W2896525219C164866538 @default.
- W2896525219 hasConceptScore W2896525219C166957645 @default.
- W2896525219 hasConceptScore W2896525219C199360897 @default.
- W2896525219 hasConceptScore W2896525219C205649164 @default.
- W2896525219 hasConceptScore W2896525219C2522767166 @default.
- W2896525219 hasConceptScore W2896525219C2776459890 @default.
- W2896525219 hasConceptScore W2896525219C2778444522 @default.
- W2896525219 hasConceptScore W2896525219C2778572836 @default.
- W2896525219 hasConceptScore W2896525219C41008148 @default.
- W2896525219 hasConceptScore W2896525219C71924100 @default.
- W2896525219 hasConceptScore W2896525219C73555534 @default.
- W2896525219 hasConceptScore W2896525219C92835128 @default.
- W2896525219 hasLocation W28965252191 @default.
- W2896525219 hasOpenAccess W2896525219 @default.
- W2896525219 hasPrimaryLocation W28965252191 @default.
- W2896525219 hasRelatedWork W159942886 @default.
- W2896525219 hasRelatedWork W1835587747 @default.
- W2896525219 hasRelatedWork W185324719 @default.
- W2896525219 hasRelatedWork W2302145519 @default.
- W2896525219 hasRelatedWork W2412025148 @default.
- W2896525219 hasRelatedWork W2625263552 @default.
- W2896525219 hasRelatedWork W2746591726 @default.
- W2896525219 hasRelatedWork W2752595148 @default.
- W2896525219 hasRelatedWork W2753645507 @default.
- W2896525219 hasRelatedWork W2769862320 @default.
- W2896525219 hasRelatedWork W2799016883 @default.
- W2896525219 hasRelatedWork W2888290206 @default.
- W2896525219 hasRelatedWork W2913134954 @default.
- W2896525219 hasRelatedWork W2935104927 @default.
- W2896525219 hasRelatedWork W3021932111 @default.
- W2896525219 hasRelatedWork W3029371751 @default.
- W2896525219 hasRelatedWork W3101882098 @default.
- W2896525219 hasRelatedWork W3140721671 @default.
- W2896525219 hasRelatedWork W3182861774 @default.
- W2896525219 hasRelatedWork W2804059269 @default.
- W2896525219 isParatext "false" @default.
- W2896525219 isRetracted "false" @default.
- W2896525219 magId "2896525219" @default.
- W2896525219 workType "article" @default.