Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896525904> ?p ?o ?g. }
- W2896525904 endingPage "852" @default.
- W2896525904 startingPage "842" @default.
- W2896525904 abstract "This paper considers the factor modelling for high-dimensional time series contaminated by additive outliers. We propose a robust variant of the estimation method given in Lam and Yao [10]. The estimator of the number of factors is obtained by an eigen analysis of a robust non-negative definite covariance matrix. Asymptotic properties of the robust eigenvalues are derived and we show that the resulting estimators have the same convergence rates as those found for the standard eigenvalues estimators. Simulations are carried out to analyse the finite sample size performance of the robust estimator of the number of factors under the scenarios of multivariate time series with and without additive outliers. As an application, the robust factor analysis is performed to reduce the dimensionality of the data and, therefore, to identify the pollution behaviour of the pollutant PM10." @default.
- W2896525904 created "2018-10-26" @default.
- W2896525904 creator A5014361737 @default.
- W2896525904 creator A5016226183 @default.
- W2896525904 creator A5036936376 @default.
- W2896525904 creator A5061859252 @default.
- W2896525904 creator A5081505245 @default.
- W2896525904 creator A5082273262 @default.
- W2896525904 creator A5089620677 @default.
- W2896525904 date "2019-04-01" @default.
- W2896525904 modified "2023-10-12" @default.
- W2896525904 title "Robust factor modelling for high-dimensional time series: An application to air pollution data" @default.
- W2896525904 cites W1607286479 @default.
- W2896525904 cites W1888123489 @default.
- W2896525904 cites W1963936186 @default.
- W2896525904 cites W1970669268 @default.
- W2896525904 cites W1974608757 @default.
- W2896525904 cites W2013018277 @default.
- W2896525904 cites W2034224707 @default.
- W2896525904 cites W2049229426 @default.
- W2896525904 cites W2063957653 @default.
- W2896525904 cites W2067267763 @default.
- W2896525904 cites W2079563517 @default.
- W2896525904 cites W2095138949 @default.
- W2896525904 cites W2102680499 @default.
- W2896525904 cites W2125793385 @default.
- W2896525904 cites W2135086139 @default.
- W2896525904 cites W2150102975 @default.
- W2896525904 cites W2158822760 @default.
- W2896525904 cites W2219069121 @default.
- W2896525904 cites W2515584647 @default.
- W2896525904 cites W2754728354 @default.
- W2896525904 cites W2800998977 @default.
- W2896525904 cites W2950126918 @default.
- W2896525904 cites W4229530126 @default.
- W2896525904 cites W4255715712 @default.
- W2896525904 cites W4362131110 @default.
- W2896525904 doi "https://doi.org/10.1016/j.amc.2018.09.062" @default.
- W2896525904 hasPublicationYear "2019" @default.
- W2896525904 type Work @default.
- W2896525904 sameAs 2896525904 @default.
- W2896525904 citedByCount "4" @default.
- W2896525904 countsByYear W28965259042020 @default.
- W2896525904 countsByYear W28965259042022 @default.
- W2896525904 crossrefType "journal-article" @default.
- W2896525904 hasAuthorship W2896525904A5014361737 @default.
- W2896525904 hasAuthorship W2896525904A5016226183 @default.
- W2896525904 hasAuthorship W2896525904A5036936376 @default.
- W2896525904 hasAuthorship W2896525904A5061859252 @default.
- W2896525904 hasAuthorship W2896525904A5081505245 @default.
- W2896525904 hasAuthorship W2896525904A5082273262 @default.
- W2896525904 hasAuthorship W2896525904A5089620677 @default.
- W2896525904 hasBestOaLocation W28965259042 @default.
- W2896525904 hasConcept C105795698 @default.
- W2896525904 hasConcept C111030470 @default.
- W2896525904 hasConcept C121332964 @default.
- W2896525904 hasConcept C143724316 @default.
- W2896525904 hasConcept C151730666 @default.
- W2896525904 hasConcept C158693339 @default.
- W2896525904 hasConcept C162324750 @default.
- W2896525904 hasConcept C178650346 @default.
- W2896525904 hasConcept C185142706 @default.
- W2896525904 hasConcept C185429906 @default.
- W2896525904 hasConcept C2777303404 @default.
- W2896525904 hasConcept C28826006 @default.
- W2896525904 hasConcept C33923547 @default.
- W2896525904 hasConcept C50522688 @default.
- W2896525904 hasConcept C62520636 @default.
- W2896525904 hasConcept C67226441 @default.
- W2896525904 hasConcept C79337645 @default.
- W2896525904 hasConcept C86803240 @default.
- W2896525904 hasConceptScore W2896525904C105795698 @default.
- W2896525904 hasConceptScore W2896525904C111030470 @default.
- W2896525904 hasConceptScore W2896525904C121332964 @default.
- W2896525904 hasConceptScore W2896525904C143724316 @default.
- W2896525904 hasConceptScore W2896525904C151730666 @default.
- W2896525904 hasConceptScore W2896525904C158693339 @default.
- W2896525904 hasConceptScore W2896525904C162324750 @default.
- W2896525904 hasConceptScore W2896525904C178650346 @default.
- W2896525904 hasConceptScore W2896525904C185142706 @default.
- W2896525904 hasConceptScore W2896525904C185429906 @default.
- W2896525904 hasConceptScore W2896525904C2777303404 @default.
- W2896525904 hasConceptScore W2896525904C28826006 @default.
- W2896525904 hasConceptScore W2896525904C33923547 @default.
- W2896525904 hasConceptScore W2896525904C50522688 @default.
- W2896525904 hasConceptScore W2896525904C62520636 @default.
- W2896525904 hasConceptScore W2896525904C67226441 @default.
- W2896525904 hasConceptScore W2896525904C79337645 @default.
- W2896525904 hasConceptScore W2896525904C86803240 @default.
- W2896525904 hasFunder F4320322025 @default.
- W2896525904 hasFunder F4320323207 @default.
- W2896525904 hasLocation W28965259041 @default.
- W2896525904 hasLocation W28965259042 @default.
- W2896525904 hasLocation W28965259043 @default.
- W2896525904 hasOpenAccess W2896525904 @default.
- W2896525904 hasPrimaryLocation W28965259041 @default.
- W2896525904 hasRelatedWork W1489099099 @default.
- W2896525904 hasRelatedWork W1539940077 @default.