Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896532220> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2896532220 endingPage "423" @default.
- W2896532220 startingPage "415" @default.
- W2896532220 abstract "With the development of China's economy, the use of fossil energy has become more and more, resulting in increasing carbon emissions. CO2 emissions have caused global warming, threatening humans and creatures on Earth. In order to effectively suppress the growth of carbon emissions, it is necessary to analyze the influencing factors of carbon emissions and apply them to predict carbon emissions. This paper presents sixteen potential influencing factors and uses grey relational analysis to identify the factors that have a strong correlation with carbon emissions. The principal component analysis (PCA) is used to extract the four principal components, which reduce the redundancy of the input data. The long short-term memory (LSTM) method is established to predict carbon emissions in China. We use back propagation neural network (BPNN) and Gaussian process regression (GPR) to compare LSTM method. The simulation results show that the prediction accuracy of carbon emissions based on LSTM is better than that of BPNN and GPR, indicating the effectiveness of PCA and LSTM in prediction of carbon emissions. Finally, this paper provides the theoretical basis for China to reduce carbon emissions by studying prediction of carbon emissions." @default.
- W2896532220 created "2018-10-26" @default.
- W2896532220 creator A5007178174 @default.
- W2896532220 creator A5027658278 @default.
- W2896532220 creator A5044301848 @default.
- W2896532220 date "2019-02-01" @default.
- W2896532220 modified "2023-10-16" @default.
- W2896532220 title "Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China" @default.
- W2896532220 cites W1841234867 @default.
- W2896532220 cites W1900644230 @default.
- W2896532220 cites W1974569987 @default.
- W2896532220 cites W2011992621 @default.
- W2896532220 cites W2041686582 @default.
- W2896532220 cites W2054736113 @default.
- W2896532220 cites W2064675550 @default.
- W2896532220 cites W2071551700 @default.
- W2896532220 cites W2090154688 @default.
- W2896532220 cites W2108107087 @default.
- W2896532220 cites W2137602040 @default.
- W2896532220 cites W2285944352 @default.
- W2896532220 cites W2334677602 @default.
- W2896532220 cites W2474920775 @default.
- W2896532220 cites W2517772030 @default.
- W2896532220 cites W2553637734 @default.
- W2896532220 cites W2573587735 @default.
- W2896532220 cites W2602749628 @default.
- W2896532220 cites W2620056059 @default.
- W2896532220 cites W2626687215 @default.
- W2896532220 cites W2694196478 @default.
- W2896532220 cites W2743680082 @default.
- W2896532220 cites W2765211337 @default.
- W2896532220 cites W2765499961 @default.
- W2896532220 cites W2777876458 @default.
- W2896532220 cites W2781420345 @default.
- W2896532220 cites W2783204403 @default.
- W2896532220 cites W2789364533 @default.
- W2896532220 cites W2791402834 @default.
- W2896532220 cites W2792653547 @default.
- W2896532220 doi "https://doi.org/10.1016/j.jclepro.2018.10.128" @default.
- W2896532220 hasPublicationYear "2019" @default.
- W2896532220 type Work @default.
- W2896532220 sameAs 2896532220 @default.
- W2896532220 citedByCount "160" @default.
- W2896532220 countsByYear W28965322202019 @default.
- W2896532220 countsByYear W28965322202020 @default.
- W2896532220 countsByYear W28965322202021 @default.
- W2896532220 countsByYear W28965322202022 @default.
- W2896532220 countsByYear W28965322202023 @default.
- W2896532220 crossrefType "journal-article" @default.
- W2896532220 hasAuthorship W2896532220A5007178174 @default.
- W2896532220 hasAuthorship W2896532220A5027658278 @default.
- W2896532220 hasAuthorship W2896532220A5044301848 @default.
- W2896532220 hasConcept C105795698 @default.
- W2896532220 hasConcept C115343472 @default.
- W2896532220 hasConcept C132651083 @default.
- W2896532220 hasConcept C154945302 @default.
- W2896532220 hasConcept C18903297 @default.
- W2896532220 hasConcept C27438332 @default.
- W2896532220 hasConcept C33923547 @default.
- W2896532220 hasConcept C39432304 @default.
- W2896532220 hasConcept C41008148 @default.
- W2896532220 hasConcept C47737302 @default.
- W2896532220 hasConcept C64734493 @default.
- W2896532220 hasConcept C86803240 @default.
- W2896532220 hasConceptScore W2896532220C105795698 @default.
- W2896532220 hasConceptScore W2896532220C115343472 @default.
- W2896532220 hasConceptScore W2896532220C132651083 @default.
- W2896532220 hasConceptScore W2896532220C154945302 @default.
- W2896532220 hasConceptScore W2896532220C18903297 @default.
- W2896532220 hasConceptScore W2896532220C27438332 @default.
- W2896532220 hasConceptScore W2896532220C33923547 @default.
- W2896532220 hasConceptScore W2896532220C39432304 @default.
- W2896532220 hasConceptScore W2896532220C41008148 @default.
- W2896532220 hasConceptScore W2896532220C47737302 @default.
- W2896532220 hasConceptScore W2896532220C64734493 @default.
- W2896532220 hasConceptScore W2896532220C86803240 @default.
- W2896532220 hasLocation W28965322201 @default.
- W2896532220 hasOpenAccess W2896532220 @default.
- W2896532220 hasPrimaryLocation W28965322201 @default.
- W2896532220 hasRelatedWork W1975632186 @default.
- W2896532220 hasRelatedWork W2003821909 @default.
- W2896532220 hasRelatedWork W2043277481 @default.
- W2896532220 hasRelatedWork W2049612019 @default.
- W2896532220 hasRelatedWork W2056239380 @default.
- W2896532220 hasRelatedWork W2922097266 @default.
- W2896532220 hasRelatedWork W3150458167 @default.
- W2896532220 hasRelatedWork W4285212053 @default.
- W2896532220 hasRelatedWork W4378227607 @default.
- W2896532220 hasRelatedWork W66448074 @default.
- W2896532220 hasVolume "209" @default.
- W2896532220 isParatext "false" @default.
- W2896532220 isRetracted "false" @default.
- W2896532220 magId "2896532220" @default.
- W2896532220 workType "article" @default.