Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896535740> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2896535740 endingPage "533" @default.
- W2896535740 startingPage "522" @default.
- W2896535740 abstract "Autonomous vehicle safety driving requires many vision tasks, such as road segmentation, lane mark detection, and vehicle recognition by frontal cameras. However, all these tasks can suffer due to drastic changes of weather and illumination. To make vision a more robust function in driving, as it is for human drivers, this study models a spectrum of weather and illuminations visible in road environments. We implement big-data mining on naturalistic driving videos through four seasons to understand the influence of weather and illumination. Weather sensitive regions are sampled as image features to describe the illumination models qualitatively and quantitatively. To understand how many distinct weather and illumination types exist for vision tasks, clustering is performed by unsupervised learning on all video samples. Typical views of a spectrum of weather and illumination conditions are generated using K-means clustering of feature distributions; we also find a stable number of clusters. The learned data are used to classify a driving view into one illumination type for guiding the road perception modules in autonomous driving. We further explore the sparse coding of vehicle views under various weather and illuminations." @default.
- W2896535740 created "2018-10-26" @default.
- W2896535740 creator A5006775539 @default.
- W2896535740 creator A5035028527 @default.
- W2896535740 creator A5062088491 @default.
- W2896535740 date "2018-12-01" @default.
- W2896535740 modified "2023-09-27" @default.
- W2896535740 title "Modeling Weather and Illuminations in Driving Views Based on Big-Video Mining" @default.
- W2896535740 cites W1604398873 @default.
- W2896535740 cites W180242331 @default.
- W2896535740 cites W1978357561 @default.
- W2896535740 cites W2041117425 @default.
- W2896535740 cites W2113968972 @default.
- W2896535740 cites W2129812935 @default.
- W2896535740 cites W2138970752 @default.
- W2896535740 cites W2150220508 @default.
- W2896535740 cites W2154673940 @default.
- W2896535740 cites W2159132531 @default.
- W2896535740 cites W2162374190 @default.
- W2896535740 cites W2168519618 @default.
- W2896535740 cites W2221832395 @default.
- W2896535740 cites W2293009534 @default.
- W2896535740 cites W2516000174 @default.
- W2896535740 cites W2608344421 @default.
- W2896535740 cites W2791318542 @default.
- W2896535740 cites W2792163463 @default.
- W2896535740 cites W2794084320 @default.
- W2896535740 cites W2804244281 @default.
- W2896535740 cites W4239125279 @default.
- W2896535740 cites W2897184872 @default.
- W2896535740 doi "https://doi.org/10.1109/tiv.2018.2873920" @default.
- W2896535740 hasPublicationYear "2018" @default.
- W2896535740 type Work @default.
- W2896535740 sameAs 2896535740 @default.
- W2896535740 citedByCount "13" @default.
- W2896535740 countsByYear W28965357402019 @default.
- W2896535740 countsByYear W28965357402020 @default.
- W2896535740 countsByYear W28965357402021 @default.
- W2896535740 countsByYear W28965357402022 @default.
- W2896535740 countsByYear W28965357402023 @default.
- W2896535740 crossrefType "journal-article" @default.
- W2896535740 hasAuthorship W2896535740A5006775539 @default.
- W2896535740 hasAuthorship W2896535740A5035028527 @default.
- W2896535740 hasAuthorship W2896535740A5062088491 @default.
- W2896535740 hasConcept C108583219 @default.
- W2896535740 hasConcept C138885662 @default.
- W2896535740 hasConcept C154945302 @default.
- W2896535740 hasConcept C169760540 @default.
- W2896535740 hasConcept C26760741 @default.
- W2896535740 hasConcept C2776401178 @default.
- W2896535740 hasConcept C31972630 @default.
- W2896535740 hasConcept C41008148 @default.
- W2896535740 hasConcept C41895202 @default.
- W2896535740 hasConcept C73555534 @default.
- W2896535740 hasConcept C86803240 @default.
- W2896535740 hasConcept C89600930 @default.
- W2896535740 hasConceptScore W2896535740C108583219 @default.
- W2896535740 hasConceptScore W2896535740C138885662 @default.
- W2896535740 hasConceptScore W2896535740C154945302 @default.
- W2896535740 hasConceptScore W2896535740C169760540 @default.
- W2896535740 hasConceptScore W2896535740C26760741 @default.
- W2896535740 hasConceptScore W2896535740C2776401178 @default.
- W2896535740 hasConceptScore W2896535740C31972630 @default.
- W2896535740 hasConceptScore W2896535740C41008148 @default.
- W2896535740 hasConceptScore W2896535740C41895202 @default.
- W2896535740 hasConceptScore W2896535740C73555534 @default.
- W2896535740 hasConceptScore W2896535740C86803240 @default.
- W2896535740 hasConceptScore W2896535740C89600930 @default.
- W2896535740 hasFunder F4320306108 @default.
- W2896535740 hasIssue "4" @default.
- W2896535740 hasLocation W28965357401 @default.
- W2896535740 hasOpenAccess W2896535740 @default.
- W2896535740 hasPrimaryLocation W28965357401 @default.
- W2896535740 hasRelatedWork W1669643531 @default.
- W2896535740 hasRelatedWork W1982826852 @default.
- W2896535740 hasRelatedWork W2005437358 @default.
- W2896535740 hasRelatedWork W2008656436 @default.
- W2896535740 hasRelatedWork W2023558673 @default.
- W2896535740 hasRelatedWork W2110230079 @default.
- W2896535740 hasRelatedWork W2134924024 @default.
- W2896535740 hasRelatedWork W2517104666 @default.
- W2896535740 hasRelatedWork W2613186388 @default.
- W2896535740 hasRelatedWork W2790662084 @default.
- W2896535740 hasVolume "3" @default.
- W2896535740 isParatext "false" @default.
- W2896535740 isRetracted "false" @default.
- W2896535740 magId "2896535740" @default.
- W2896535740 workType "article" @default.