Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896536627> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2896536627 endingPage "1862" @default.
- W2896536627 startingPage "1857" @default.
- W2896536627 abstract "No AccessEngineering NotesGaussian Mixture Penalty for Trajectory Optimization ProblemsCédric Rommel, Frédéric Bonnans, Pierre Martinon and Baptiste GregoruttiCédric RommelCMAP, Polytechnic School, 91128 Palaiseau, France*Ph.D. Student; also INRIA, 91120 Palaiseau, France, and Safety Line, 75015 Paris, France; .Search for more papers by this author, Frédéric BonnansCMAP, Polytechnic School, 91128 Palaiseau, France†Senior Researcher, Team COMMANDS; also INRIA, 91120 Palaiseau, France; .Search for more papers by this author, Pierre MartinonCMAP, Polytechnic School, 91128 Palaiseau, France‡Researcher, Team COMMANDS; also INRIA, Palaiseau, 91120, France; .Search for more papers by this author and Baptiste GregoruttiSafety Line, 75015 Paris, France§Research Manager, Baptiste; .Search for more papers by this authorPublished Online:9 Apr 2019https://doi.org/10.2514/1.G003996SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Cots O., Gergaud J. and Goubinat D., “Direct and Indirect Methods in Optimal Control with State Constraints and the Climbing Trajectory of an Aircraft,” Optimal Control Applications and Methods, Vol. 39, No. 1, 2018, pp. 281–301. doi:https://doi.org/10.1002/oca.v39.1 OCAMD5 1099-1514 CrossrefGoogle Scholar[2] Nguyen N., “Singular Arc Time-Optimal Climb Trajectory of Aircraft in a Two-Dimensional Wind Field,” Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2006-6598, 2006. doi:https://doi.org/10.2514/6.2006-6598 LinkGoogle Scholar[3] Khardi S., Abdallah L., Konovalova O. and Houacine M., “Optimal Approach Minimizing Aircraft Noise and Fuel Consumption,” Acta Acustica United with Acustica, Vol. 96, No. 1, 2010, pp. 68–75. doi:https://doi.org/10.3813/AAA.918257 CrossrefGoogle Scholar[4] Cafieri S., Cellier L., Messine F. and Omheni R., “Combination of Optimal Control Approaches for Aircraft Conflict Avoidance via Velocity Regulation,” Optimal Control Applications and Methods, Vol. 39, No. 1, 2018, pp. 181–203. doi:https://doi.org/10.1002/oca.v39.1 OCAMD5 1099-1514 CrossrefGoogle Scholar[5] Rommel C., Bonnans J. F., Gregorutti B. and Martinon P., “Aircraft Dynamics Identification for Optimal Control,” Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences, European Conference for Aeronautics and Aerospace Sciences, Milan, 2017, Paper 179. doi:https://doi.org/10.13009/EUCASS2017-179 Google Scholar[6] Rommel C., Bonnans J. F., Gregorutti B. and Martinon P., “Block Sparse Linear Models for Learning Structured Dynamical Systems in Aeronautics,” June 2018, https://hal.inria.fr/hal-01816400. Google Scholar[7] Rommel C., Bonnans J. F., Gregorutti B. and Martinon P., “Quantifying the Closeness to a Set of Random Curves via the Mean Marginal Likelihood,” June 2018, https://hal.inria.fr/hal-01816407. Google Scholar[8] Bonnans J. F., Giorgi D., Grelard V., Heymann B., Maindrault S., Martinon P., Tissot O. and Liu J., “BOCOP—a Collection of Examples,” TR RR-8053, INRIA, Palaiseau, 2017, http://www.bocop.org. Google Scholar[9] Betts J. T. and Cramer E. J., “Application of Direct Transcription to Commercial Aircraft Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 1, 1995, pp. 151–159. doi:https://doi.org/10.2514/3.56670 JGCODS 0731-5090 LinkGoogle Scholar[10] Eerland W. J., Box S. and Sóbester A., “Modeling the Dispersion of Aircraft Trajectories Using Gaussian Processes,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 12, 2016, pp. 2661–2672. doi:https://doi.org/10.2514/1.G000537 JGCODS 0731-5090 LinkGoogle Scholar[11] Dempster A. P., Laird N. M. and Rubin D. B., “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1, 1977, pp. 1–22. doi:https://doi.org/10.1111/rssb.1977.39.issue-1 JSTBAJ 0035-9246 CrossrefGoogle Scholar[12] Xu L. and Jordan M. I., “On Convergence Properties of the EM Algorithm for Gaussian Mixtures,” Neural Computation, Vol. 8, No. 1, 1996, pp. 129–151. doi:https://doi.org/10.1162/neco.1996.8.1.129 NEUCEB 0899-7667 CrossrefGoogle Scholar[13] O'Brien T. A., Collins W. D., Rauscher S. A. and Ringler T. D., “Reducing the Computational Cost of the ECF Using a nuFFT: A Fast and Objective Probability Density Estimation Method,” Computational Statistics & Data Analysis, Vol. 79, No. 1, 2014, pp. 222–234. doi:https://doi.org/10.1016/j.csda.2014.06.002 CrossrefGoogle Scholar[14] O'Brien T. A., Kashinath K., Cavanaugh N. R., Collins W. D. and O'Brien J. P., “A Fast and Objective Multidimensional Kernel Density Estimation Method: fastKDE,” Computational Statistics & Data Analysis, Vol. 101, No. 1, 2016, pp. 148–160. doi:https://doi.org/10.1016/j.csda.2016.02.014 CrossrefGoogle Scholar[15] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel M., Blondel O., Prettenhofer P., Weiss R., Dubourg V. and et al., “Scikit-Learn: Machine Learning in Python,” Journal of Machine Learning Research, Vol. 12, Oct. 2011, pp. 2825–2830. Google Scholar[16] Schwarz G., “Estimating the Dimension of a Model,” The Annals of Statistics, Vol. 6, No. 2, 1978, pp. 461–464. doi:https://doi.org/10.1214/aos/1176344136 CrossrefGoogle Scholar[17] Lloyd S., “Least Squares Quantization in PCM,” IEEE Transactions on Information Theory, Vol. 28, No. 2, 1982, pp. 129–137. doi:https://doi.org/10.1109/TIT.1982.1056489 IETTAW 0018-9448 CrossrefGoogle Scholar[18] Cesa-Bianchi N. and Lugosi G., Prediction, Learning, and Games, Cambridge Univ. Press, Cambridge, U.K., 2006, Chap. 2. CrossrefGoogle Scholar[19] Sridharan R., “An Introduction to the EM Algorithm, Motivated by Gaussian Mixture Models,” MIT Lecture Notes, 2014, http://people.csail.mit.edu/rameshvs/content/gmm-em.pdf. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byAn end-to-end data-driven optimization framework for constrained trajectories17 March 2022 | Data-Centric Engineering, Vol. 3Tunnel Gaussian Process Model for Learning Interpretable Flight’s Landing ParametersSim Kuan Goh , Zhi Jun Lim , Sameer Alam and Narendra Pratap Singh 21 September 2021 | Journal of Guidance, Control, and Dynamics, Vol. 44, No. 12Gaussian mixture model based fixed-time control for safe proximity to spacecraft with complex shape obstacleAdvances in Space Research, Vol. 68, No. 10Quantifying the closeness to a set of random curves via the mean marginal likelihood4 March 2021 | ESAIM: Probability and Statistics, Vol. 25Safe Proximity Operation to Rotating Non-Cooperative Spacecraft with Complex Shape Using Gaussian Mixture Model-Based Fixed-Time Control29 August 2020 | Applied Sciences, Vol. 10, No. 17 What's Popular Volume 42, Number 8August 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAerospace SciencesAir Traffic ControlAir Traffic ManagementAircraft Dynamic ModesAirspeedAviationFlight DynamicsFlight Mechanics KeywordsTrajectory OptimizationIndicated AirspeedAngle of AttackTurbofanGaussian Mixture ModelsAir Traffic ControlFuel ConsumptionDiscrete Probability DistributionsOptimization AlgorithmAircraft DynamicsPDF Received2 October 2018Accepted20 February 2019Published online9 April 2019" @default.
- W2896536627 created "2018-10-26" @default.
- W2896536627 creator A5001497445 @default.
- W2896536627 creator A5040990395 @default.
- W2896536627 creator A5064622207 @default.
- W2896536627 creator A5086467621 @default.
- W2896536627 date "2019-08-01" @default.
- W2896536627 modified "2023-10-10" @default.
- W2896536627 title "Gaussian Mixture Penalty for Trajectory Optimization Problems" @default.
- W2896536627 cites W1570963478 @default.
- W2896536627 cites W2046240797 @default.
- W2896536627 cites W2049633694 @default.
- W2896536627 cites W2058532528 @default.
- W2896536627 cites W2062739523 @default.
- W2896536627 cites W2134199473 @default.
- W2896536627 cites W2150593711 @default.
- W2896536627 cites W2168175751 @default.
- W2896536627 cites W2295984635 @default.
- W2896536627 cites W2333589402 @default.
- W2896536627 cites W2513981722 @default.
- W2896536627 cites W2742830899 @default.
- W2896536627 cites W2795748127 @default.
- W2896536627 doi "https://doi.org/10.2514/1.g003996" @default.
- W2896536627 hasPublicationYear "2019" @default.
- W2896536627 type Work @default.
- W2896536627 sameAs 2896536627 @default.
- W2896536627 citedByCount "8" @default.
- W2896536627 countsByYear W28965366272019 @default.
- W2896536627 countsByYear W28965366272020 @default.
- W2896536627 countsByYear W28965366272021 @default.
- W2896536627 countsByYear W28965366272022 @default.
- W2896536627 crossrefType "journal-article" @default.
- W2896536627 hasAuthorship W2896536627A5001497445 @default.
- W2896536627 hasAuthorship W2896536627A5040990395 @default.
- W2896536627 hasAuthorship W2896536627A5064622207 @default.
- W2896536627 hasAuthorship W2896536627A5086467621 @default.
- W2896536627 hasBestOaLocation W28965366272 @default.
- W2896536627 hasConcept C121332964 @default.
- W2896536627 hasConcept C126255220 @default.
- W2896536627 hasConcept C127413603 @default.
- W2896536627 hasConcept C1276947 @default.
- W2896536627 hasConcept C13662910 @default.
- W2896536627 hasConcept C146978453 @default.
- W2896536627 hasConcept C173246807 @default.
- W2896536627 hasConcept C178802073 @default.
- W2896536627 hasConcept C2776637919 @default.
- W2896536627 hasConcept C33923547 @default.
- W2896536627 hasConcept C41008148 @default.
- W2896536627 hasConcept C42475967 @default.
- W2896536627 hasConcept C91575142 @default.
- W2896536627 hasConceptScore W2896536627C121332964 @default.
- W2896536627 hasConceptScore W2896536627C126255220 @default.
- W2896536627 hasConceptScore W2896536627C127413603 @default.
- W2896536627 hasConceptScore W2896536627C1276947 @default.
- W2896536627 hasConceptScore W2896536627C13662910 @default.
- W2896536627 hasConceptScore W2896536627C146978453 @default.
- W2896536627 hasConceptScore W2896536627C173246807 @default.
- W2896536627 hasConceptScore W2896536627C178802073 @default.
- W2896536627 hasConceptScore W2896536627C2776637919 @default.
- W2896536627 hasConceptScore W2896536627C33923547 @default.
- W2896536627 hasConceptScore W2896536627C41008148 @default.
- W2896536627 hasConceptScore W2896536627C42475967 @default.
- W2896536627 hasConceptScore W2896536627C91575142 @default.
- W2896536627 hasIssue "8" @default.
- W2896536627 hasLocation W28965366271 @default.
- W2896536627 hasLocation W28965366272 @default.
- W2896536627 hasLocation W28965366273 @default.
- W2896536627 hasLocation W28965366274 @default.
- W2896536627 hasLocation W28965366275 @default.
- W2896536627 hasOpenAccess W2896536627 @default.
- W2896536627 hasPrimaryLocation W28965366271 @default.
- W2896536627 hasRelatedWork W2015393961 @default.
- W2896536627 hasRelatedWork W2139910871 @default.
- W2896536627 hasRelatedWork W2285755727 @default.
- W2896536627 hasRelatedWork W2356996864 @default.
- W2896536627 hasRelatedWork W2378339670 @default.
- W2896536627 hasRelatedWork W2904060783 @default.
- W2896536627 hasRelatedWork W4232959781 @default.
- W2896536627 hasRelatedWork W4382583006 @default.
- W2896536627 hasRelatedWork W4385832323 @default.
- W2896536627 hasRelatedWork W614786457 @default.
- W2896536627 hasVolume "42" @default.
- W2896536627 isParatext "false" @default.
- W2896536627 isRetracted "false" @default.
- W2896536627 magId "2896536627" @default.
- W2896536627 workType "article" @default.