Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896537475> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2896537475 abstract "Traditional anti-virus technologies have failed to keep pace with proliferation of malware due to slow process of their signatures and heuristics updates. Similarly, there are limitations of time and resources in order to perform manual analysis on each malware. There is a need to learn from this vast quantity of data, containing cyber attack pattern, in an automated manner to proactively adapt to ever-evolving threats. Machine learning offers unique advantages to learn from past cyber attacks to handle future cyber threats. The purpose of this research is to propose a framework for multi-classification of malware into well-known categories by applying different machine learning models over corpus of malware analysis reports. These reports are generated through an open source malware sandbox in an automated manner. We applied extensive pre-modeling techniques for data cleaning, features exploration and features engineering to prepare training and test datasets. Best possible hyper-parameters are selected to build machine learning models. These prepared datasets are then used to train the machine learning classifiers and to compare their prediction accuracy. Finally, these results are validated through a comprehensive 10-fold cross-validation methodology. The best results are achieved through Gaussian Naive Bayes classifier with random accuracy of 96% and 10-Fold Cross Validation accuracy of 91.2%. The said framework can be deployed in an operational environment to learn from malware attacks for proactively adapting matching counter measures." @default.
- W2896537475 created "2018-10-26" @default.
- W2896537475 creator A5009591817 @default.
- W2896537475 creator A5018881921 @default.
- W2896537475 creator A5036550526 @default.
- W2896537475 creator A5059913901 @default.
- W2896537475 date "2018-06-01" @default.
- W2896537475 modified "2023-10-17" @default.
- W2896537475 title "A Multi-Classifier Framework for Open Source Malware Forensics" @default.
- W2896537475 cites W1981033991 @default.
- W2896537475 cites W2154290668 @default.
- W2896537475 cites W2307930854 @default.
- W2896537475 cites W2614239970 @default.
- W2896537475 cites W2739305113 @default.
- W2896537475 doi "https://doi.org/10.1109/wetice.2018.00027" @default.
- W2896537475 hasPublicationYear "2018" @default.
- W2896537475 type Work @default.
- W2896537475 sameAs 2896537475 @default.
- W2896537475 citedByCount "3" @default.
- W2896537475 countsByYear W28965374752019 @default.
- W2896537475 countsByYear W28965374752021 @default.
- W2896537475 countsByYear W28965374752023 @default.
- W2896537475 crossrefType "proceedings-article" @default.
- W2896537475 hasAuthorship W2896537475A5009591817 @default.
- W2896537475 hasAuthorship W2896537475A5018881921 @default.
- W2896537475 hasAuthorship W2896537475A5036550526 @default.
- W2896537475 hasAuthorship W2896537475A5059913901 @default.
- W2896537475 hasConcept C119857082 @default.
- W2896537475 hasConcept C12267149 @default.
- W2896537475 hasConcept C124101348 @default.
- W2896537475 hasConcept C154945302 @default.
- W2896537475 hasConcept C2779395397 @default.
- W2896537475 hasConcept C38652104 @default.
- W2896537475 hasConcept C41008148 @default.
- W2896537475 hasConcept C52001869 @default.
- W2896537475 hasConcept C541664917 @default.
- W2896537475 hasConcept C70437156 @default.
- W2896537475 hasConcept C95623464 @default.
- W2896537475 hasConceptScore W2896537475C119857082 @default.
- W2896537475 hasConceptScore W2896537475C12267149 @default.
- W2896537475 hasConceptScore W2896537475C124101348 @default.
- W2896537475 hasConceptScore W2896537475C154945302 @default.
- W2896537475 hasConceptScore W2896537475C2779395397 @default.
- W2896537475 hasConceptScore W2896537475C38652104 @default.
- W2896537475 hasConceptScore W2896537475C41008148 @default.
- W2896537475 hasConceptScore W2896537475C52001869 @default.
- W2896537475 hasConceptScore W2896537475C541664917 @default.
- W2896537475 hasConceptScore W2896537475C70437156 @default.
- W2896537475 hasConceptScore W2896537475C95623464 @default.
- W2896537475 hasLocation W28965374751 @default.
- W2896537475 hasOpenAccess W2896537475 @default.
- W2896537475 hasPrimaryLocation W28965374751 @default.
- W2896537475 hasRelatedWork W2141501114 @default.
- W2896537475 hasRelatedWork W2495444086 @default.
- W2896537475 hasRelatedWork W2595988085 @default.
- W2896537475 hasRelatedWork W2979979539 @default.
- W2896537475 hasRelatedWork W3014147770 @default.
- W2896537475 hasRelatedWork W3105251098 @default.
- W2896537475 hasRelatedWork W3127425528 @default.
- W2896537475 hasRelatedWork W3168994312 @default.
- W2896537475 hasRelatedWork W4311106074 @default.
- W2896537475 hasRelatedWork W4313549251 @default.
- W2896537475 isParatext "false" @default.
- W2896537475 isRetracted "false" @default.
- W2896537475 magId "2896537475" @default.
- W2896537475 workType "article" @default.